

Well History Report For

Chevron et al Newburn II-23

At Exploration License Area 2359 Off the Scotian Shelf Offshore, Nova Scotia

CANADA NOVA SCOTIA OFFSHORE PETRO BOARD

November 2002

CNSOPB
INFORMATION RELEASE DATE

AUG 2 1 2004

CATEGORY	1

Well History Report For

Chevron et al Newburn H-23

At
Exploration License Area 2359
Off the Scotian Shelf
Offshore, Nova Scotia

PECETYED

NOV 20 2000

CANADA: NOVA SCOTIA

OFFSHORE PETRO BOARD

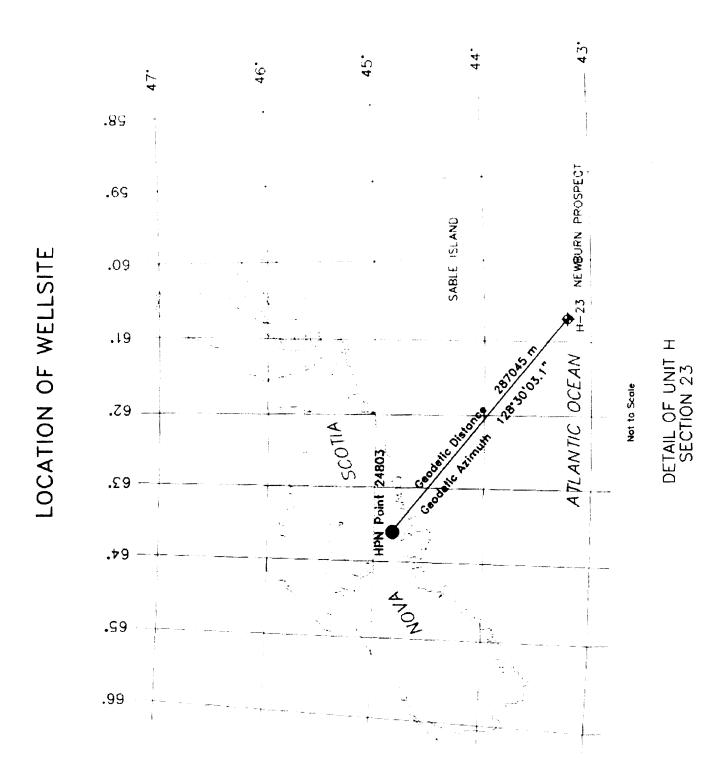
November 2002

TABLE OF CONTENTS

1.	INTRODU	CTION	PAGE
	1.1.	Introduction	1
	1.2.	Location Map	. 1
	1.3.	General Information	1
	1.4.	Drilling Unit Performance	1
	1.5.	Difficulties and Delays	2
2.	GENERAL	INFORMATION	
	2.1.	Well Name and Number	4
	2.2.	Exploration Agreement	4
	2.3.	Operator	4
	2.4.	Agent	4
	2.5.	Contractor	4
	2.6.	Well Location	4
		Unique Well Identifier	4
	2.8.	Drilling Unit	4
	2.9.	Position Keeping	4
3.	DRILLING	G AND COMPLETIONS OPERATIONS	
	3.1.	Elevations	5
	3.2.	Total Depth	5
	3.3.	Significant Dates	5 5 5 5 5 5 5 5 5
	3.4.	Well Status	5
	3.5.	Costs	5
	3.6.	Hole Sizes and Depths	5
	3.7.	Daily Drilling Reports	5
	3.8.	Hole Section Summary	5
	3.9.	Bit Record	5
	3.10.	BHA Summary	5
	3.11.	Casing and Cementing Reports	5
	3.12.		5
	3.13.		6
	3.14.		6
	3.15.	Fishing Operations	6
	3.16.	Well Kicks	6
	3.17.	Formation Leak-off Tests	6
	3.18.	Time Distribution	6
	3.19.	Directional and Deviation Surveys	6
	3.20.	Abandonment Plugs	6
	3.21.	Well Schematic	7
	3.22.	Fluid Samples	7
	3.23.	Final Legal Survey Plan	7
	3.24.		7
	3.25.	Well Termination Record	8

4.	GEOLOGI	CAL	<u>PAGE</u>
	4.1.	Formation Tops	10
	4.2.	Geological Significance	10
	4.3.	Lithological Summary	11
	4.4.	Stratigraphic Column	18
5.	WELL EV	ALUATION	
	5.1	Drill Cuttings	19
	5.1.1	Missing Drill Cutting Samples	19
	5.1.2	Drill Cuttings Analyses	19
	5.1.3	Distribution of Drill Cutting Samples	20
	5.2	Mud Log Data	21
	5.3	Conventional Core Data	21
	5.4	Sidewall Cores	21
	5.4.1	Analyses	22
	5.5	LWD Log Data	23
	5.6	Wireline Log Data	23
	5.7	Velocity Surveys Wireline Formation Tests	24
	5.8 5.9	Drill Stem Tests	24 24
	3.9	Dim Stell Tests	24
		APPENDICES	
	A.	Weather conditions and vessel response.	
	В.	Daily Drilling Reports/Time-Depth Curve.	
	C.	Hole Section Summary	
	D.	Bit Record	
	E.	BHA Summary	
	F.	Casing and Cementing Reports	
	G.	Drilling Fluid Summary	
	Н.	Formation Integrity Test results	
	I.	Time Distribution	
	J.	Directional and Deviation Surveys	
	K.	Abandonment Details	
	L.	Well Schematic	
	M.	Composite Wireline Well Log	
	N.	Daily Geological Reports	
	O.	Detailed Drill Cuttings Descriptions	
	P.	Detailed Sidewall Core Descriptions Wireling Logging Percepts	
	Q. R.	Wireline Logging Reports Wireline Formation Pressure Tests	
	s.	Sidewall Core Routine Core Analysis	
	3. T.	Sidewall Core X-Ray Diffraction Analysis	
	U.	Sidewall Core Photographs	
	V.	Biostratigraphic Analysis	
	W.	Dialectric Constant Analysis	
	X.	Fluid Inclusion Analysis Vitrinite Reflectance Analysis Rock Eval Analysis Rock Eval Analysis	
	Y.	Vitrinite Reflectance Analysis Polygonal Marc 21/07	
	Z.	Rock Eval Analysis	

Part 1 Introduction


1.5 <u>Difficulties and Delays</u>

	Incident	<u>Time</u>	Percent of Total Well Time
>	Well control incidents and associated activities.	206.5h	rs 9.3%
>	Problems with directional and MWD/LWD equipment failures.	62.0hrs	2.8%
>	Problems with other equipment failures.	52.0hrs	2.3%
>	Rig Repair.	41hrs	1.8%
>	Problems with cuttings drying equipment.	40hrs	1.8%
>	Problems associated with failed logging tools.	26.5hrs	s 1.2%
>	Miscellaneous Unexpected Event time	81.0hrs	s 3.6%

- Deviation problems causing well to be respud (18.5hrs)
- Lost ROV visibility while drilling 660mm hole section (7hrs)
- Investigate suspect high inclination of LPWH bullseye (7hrs)
- Trouble getting pressure test on 508mm casing (12hrs)
- Trouble drilling cement and float equipment (21.5hrs)
- Time spent trying to work 197mm liner to bottom (8hrs)
- Miscellaneous (7hrs)

For a detailed description of the above noted events, refer to the Hole Section Summary in Appendix C.

PART 1: Introduction

1.1 Introduction

Chevron et al Newburn H-23 is located approximately 287 kilometers east-southeast of Halifax, Nova Scotia at 43 12' 16.726" North latitude and 60 48'18.442" West longitude (NAD 83) in a water depth of 977m.

The purpose of the well was to test for an economically significant hydrocarbon column that targeted seismically defined deepwater turbidite sandstone reservoirs that are the bypassed and lowstand equivalents of the known productive delta-front sandstones in the Sable Basin. The well was programmed as an S-curve directional profile in order to optimize penetration points on two key seismic horizons within the prospective interval.

Chevron Canada Limited was the operator of record for the Chevron et al Newburn H-23 well. A dynamically positioned drillship, the Transocean Deepwater Millennium drilled the well.

The original well was spud at 00:30hrs May 22, 2002 and was drilled 56m BML and was subsequently abandoned due to excessive deviation. The rig was moved 40m North and the well was respud at 12:30 May 22, 2002. The well was drilled with an S-curve directional profile and reached a total depth of 6070m MD at 04:00 August 9, 2002. The well penetrated the Tertiary and Cretaceous sediments and terminated in the base of the Early Cretaceous. The well was abandoned and the Deepwater Millenium was released from the Chevron et al Newburn H-23 location at 03:30 August 22, 2002.

1.2 Location Map

See page 3 for the Chevron et al Newburn H-23 wellsite location map.

1.3 General Information

1.3.1 Well name Chevron et al Newburn H-23

1.3.2 Co-ordinates 43 12' 16.726" N 60 48' 18.442" W (NAD83)

The above final coordinates situate the well 1.34m at 190.14 degrees from the proposed location. The preliminary position determination was calculated using 100 Differential Global Positioning Survey (DGPS) fixes observed at a 10-second interval.

The final positioning was calculated once the 914mm casing and Low Pressure Wellhead Housing (LPWH) were set. Dual frequency carrier phase GPS observations were collected over two 12 hour sessions, with data collected at 30 second intervals. The data was processed along with GPS base station data from the Canadian Active Control Network points in St John's Nfld. and Schefferville PQ to process the final location. All positioning data was collected on the drillship using surface positioning instrumentation. The accuracy of the primary positioning equipment was verified using the Dynamic Positioning system on the Deepwater Millenium prior to commencing survey operations.

1.4 <u>Drilling Unit Performance</u>

See Appendix A for a graphical summary of weather conditions and vessel response.

Part 2 General Information

PART 2: General Information

2.1 Well Name & Number: Chevron et al Newburn H-23

Unit:

Η

Section:

23

Grid:

43 20' N, 60 45' W

2.2 Exploration Agreement (Permit): EL 2359

2.3 Operator: Chevron Canada Limited

 $500 - 5^{th}$ Avenue S.W.

Calgary, Alberta

T2P 0L7

2.4 Agent: Chevron Canada Resources Ltd.

Suite 1407, Purdy's Wharf Tower 1

1959 Upper Water St.

Halifax, NS B3J 3N2

2.5 <u>Contractor:</u> Transocean

R & B Falcon Canada Co.

235 Water Street Suite M102. St. John's, NF A1C 1B6

2.6 <u>Well Location:</u> 43 12' 16.726" N

60 48' 18.442" W

(NAD83)

2.7 <u>Unique Well Identifier:</u> 300H234320060450

2.8 <u>Drilling Unit:</u>

Name: Deepwater Millennium Drillship

Port of Registry: Panama

Year Built: 1999

Shipyard: Samsung Heavy Industries. Kyungnam, South Korea

2.9 <u>Position Keeping:</u> Dynamic Positioning

Part 3 Drilling & Completion Operations

PART 3: Drilling and Completion Operations

3.1	Elevations	Rotary Table: Water Depth: Seafloor – m RT:	24 m 977 m 1001 m
3.2	Total Depth	Driller: Logged Depth: Plug Back Depth:	6070 m MD 6077.5 m MD 1023 m MD
3.3	Significant Dates:	Spud: Re-spud: TD reached: Rig Released:	00:30 hrs, May 22, 2002 12:30 hrs, May 22, 2002 04:00 hrs, August 9, 2002 03:30 hrs, August 22, 2002
3.4	Well Status	Abandoned	
3.5	Costs	AFE Estimate: Field Estimate:	\$79 499 000 \$83 356 456

3.6 Hole Sizes and Depths

Classification	Interval	<u>Hole</u>
Structural	1001 m – 1100 m	1067 mm
Surface	1100 m – 1917 m	660 mm
Intermediate 1	1917 m – 3515 m	432 mm
Intermediate 2	3515 m – 4418 m	311 mm
Main 1	4418 m – 5425 m	216 mm
Main 2	5425 m – 6070 m	165 mm

3.7 <u>Daily Drilling Reports</u>

See Appendix B for the Daily Drilling Reports

3.8 <u>Hole Section Summary</u>

See Appendix C for the Hole Section Summary.

3.9 Bit Record

See Appendix D for the Bit Record

3.10 BHA Summary

See Appendix E for a detailed breakdown of the BHA's used to drill Newburn H-23.

3.11 Casing and Cementing Reports

See Appendix F for the casing and cementing reports.

3.12 <u>Sidetracked Hole</u>

Not Applicable

3.13 Drilling Fluid

See Appendix G for Drilling Fluid Summary

3.14 Fluid Disposal/Cuttings Disposal

See Appendix G - Drilling Fluid Summary for information concerning Fluid Disposal and Cuttings Disposal.

3.15 Fishing Operations

There were no fishing operations during the drilling of the Chevron et al Newburn H-23 well.

3.16 Well Kicks

A drilling break occurred at 5404 m MD while drilling ahead with a 1655 kg/m^3 mud density. The well was flow checked at 5405 m MD and shut in with a 0.24m^3 volume increase. The following pressures were observed: SIDPP – 5934 kPa, SICP – 4760 kPa. The well was killed using the Driller's Method and a mud weight of 1775kg/m^3 . While circulating the influx out of the hole, returns were partially lost as a result of a plugged choke. A total of 49m^3 were lost prior to regaining full circulation. A total of 119 hours was spent circulating and conditioning mud to $1775-1790 \text{kg/m}^3$ after the initial well kill as a result of severely gas cut mud.

3.17 Formation Leak-off Tests

See Appendix H for Formation Integrity Test results

3.18 Time Distribution

Tables summarizing hourly breakdown by hole section is included in Appendix I

3.19 <u>Directional and Deviation Surveys</u>

See Appendix J for a listing of the directional and deviation surveys and a plan view of the well.

3.20 Abandonment Plugs

Type of Plug	<u>Interval</u>	Felt	Cement and Additives
196.9mmCementRetainer	5332m MD	No	
Squeeze	5332-5480m	No	3.0m ³ - 1920kg/m ³ "G" cement+41.6 L Halad-344EXP+30.2 L SCR-
İ	MD		10045+4 L HR-25+ 22.7 L CFR-3.
Cement Plug	5302-5332m	No	0.66m³ - 1920kg/m³ "G" cement+41.6 L Halad-344EXP+30.2 L SCR-
	MD		10045+41 HR-25+ 22.7 L CFR-3.
Cement Plug	4170-4270m	No	2.2m ³ - 1920kg/m ³ "G" cement + 8 l/tonne Halad 344-EXP,6
	MD		1/tonne SCR-100 + 5 1/tonne CFR-3
251mmCement Retainer	1109m MD	No	
Squeeze	1086-1250m	No	5.25m ³ – 1910kg/m ³ "G" cement + 15 l/tonne Halad 344-EXP+10
	MD		1/tonne CaCl ₂ + 6 1/tonne CFR-3
346mmCement Retainer	1086m MD	No	
Squeeze	1023-1247m	No	23.0m ³ – 1910kg/m ³ "G" cement + 30 1/tonne CaCl ₂ + 6 1/tonne
	MD		CFR-3

Refer to Appendix K for a detailed diagram of the final Plug and Abandon schematic, a copy of the Well Termination Record and a copy of the final location ROV seabed survey report.

3.21 Well Schematic

Refer to Appendix L for a detailed diagram of the final as drilled wellbore schematic.

3.22 Fluid Samples

Not Applicable

3.23 Final Legal Survey Plan

Will be submitted as part of this report upon when approved survey is received from Thales Geoservices Canada Ltd.

3.24 Support Craft:

3.24.1 Supply Vessels

The following supply vessels were utilized during operations:

Vessel	Owner Contractor	<u>Flag</u>	<u>BHP</u>	<u>Functions</u>
Bonavista	Maersk	Canadian	10 880	AHTS
Chancellor	Maersk	Canadian	14 400	AHTS
Hebron Sea	Secunda Marine	Canadian	10 500	AHTS

2.24.2 Logistics Summary: Supply Vessels

Supply Vessel Sailings:

Maersk Chancellor: 16 Maersk Bonavista: 17

Hebron Sea: 6

Total: 39 Sailings

3.24.3 Helicopters

Two Cougar Helicopters were used to support the operation, the S61, and the S76.

3.24.4 Logistics Summary: Helicopters

Number of Outbound Flights: 109 Number of Inbound Flights: 109 Total Number of Helicopter Flights: 218

Total Number of Hencopter Frights. 2.

Number of cancelled flights: 24

Number of Passengers moved on Outbound Flights: 759
Number of Passengers moved on Inbound Flights: 775
Total Number of Passengers moved by Helicopter: 1534

Freight moved on Outbound Flights: 8923 lbs Freight moved on Inbound Flights: 1703 lbs Total Freight moved by Helicopter: 10626 lbs.

WELL TERMINATION RECORD

WELL DATA

Well Name: Cheyron et al Newburn H-23	Operator: Chevron Canada Resources
Drilling Unit: Deepwater Millennium	Contractor: Transocean
Field/Pool: Exploration License 2359	Well Status: Abandoned
Final Coordinates: Lat: 43 deg 12 min. 16.7121 s N	Long: 60 deg. 48 min. 18.4330 s W
Elevations RT/KB: 1001m RT	Water Depth: 277m
Spud Date: May 22, 2002	Well Termination Date: August 21, 2002
Total Denth: 6070 m MD / 5983m TVD	

CASING AND CEMENTING

O.D.: Weight Grade: Depth Set: Cement and Additives

*914.4mm, 1080 kg/m, X-60 Grade Structural Casing set at 1093m cemented with 93.8 tonne, 1910 kg/m3 G + 20

Vtonne CaCl2 cement.

*508mm,251 kg/m, X-56 Grade Surface Casing set at 1902m cemented with 232 tonne, 1550 kg/m3 foamed G lead cement w/ 7 Vtonne Zonescalant 2000 + 57.8 tonne 1910 kg/m3 G tail cement w/ 20 Vtonne CaCl2.

*346mm, 131 kg/m, P110 Int. Casing set at 3502m cemented with 56.7 tonne, 1560 kg/m3 G lead cement w/3,3%

PHG, 10 Vtonne SCR-1001, 12 Vtonne Halad-3441, + 21.3 tonne, 1895 kg/m3 G tail cement w/7 Vtonne SCR-1001, & 14 Vtonne Halad-3444.

*251mm, 93.5 kg/m, P/C110 Int. Casing set at 4402m MD cemented with 24.5 tonne, 1875 kg/m3 G lead cement w/ 35% SSA-1, 0.2% Super CBL, 6 Vtonne SCR-1001, 16 Vtonne Halad-344+ 4.3 tonne, 1875 kg/m3 G tail cement w/ 35% SSA-1, 6 Vtonne SCR-1001, & 16 Vtonne Halad-344.

*197mm, 68.6 kg/m, HC-0125 Int. Liner set at 5403m MD - TOL at 4224m MD cemented with 9.8 tonne, 1875

* 197mm. 68.6 kg/m. HC-O125 Int. Liner set at 5403m MD - TOL at 4224m MD comented with 9.8 tonne, 1875 kg/m3 G cement w/ 35% SSA-1, 17.7 I/tonne Halad -344EXP, 13 I/tonne Halad 413L & 8 I/tonne SCR-100L.

PLUGGING PROGRAM

Approval of the following program was obtained by (person) <u>John Connor /Scott Mcleod.-ChevronTexaco</u> from (person) <u>Bob Hale</u> of the Canada - Nova Scotia Offshore Petroleum Board by means of <u>email</u> dated August 16, 2002

Type of Plug: Interval: Feli/Pressure Tested: Cement & Additives

*Cement retainer set at 5332m, Squeezed 3 m3-1920 kg/m3 G cement below retainer (5332m-5480m) and spotted

*Cement retainer set at 5332m, Squeezed 3 m3-1920 kg/m3 G cement below retainer (5332m-5480m) and spotted

0.66 m3 above retainer (5302m-5332m) w/ 41.61 Halad-344EXP, 30.21 SCR-10045.41 HR-25 & 22.71 CFR-3.

*Balanced plug set across 197mm liner top (4170m-4270m) with 4.1 tonne . 2.17 m3, 1920 kg/m3 G cement w/8

Vionne Halad 344-EXP.6 Vionne SCR-100 & 5 Vionne CFR-3

*Set 251mm cement retainer at 1109m. Cut 251mm casing at 1104m. Set 346mm cement retainer at 1086m. Squeezed 6.7 tonne. 5.25 m3. 1910 kg/m3 G cement w/15 I/tonne Halad 344 EXP. 10 I/tonne CaCl2. 6 I/tonne CFR-3. Cement interval 1086m - 1250m.

*Cut 346mm casing at 1083m. Squeezed 12.7 m3 below cut point into casing annuli and 10.33m3 above cut point for a plug Interval of 1023m - 1247m. Total of 29.9 tonne, 23.05 m3 of 1910 kg/m3 G cement w/ 6 l/tonne CFR-3 & 30 l/tonne CaCl2 pumped. Plug negative pressure tested w/ seawater. Wellhead cut at 1003m (2m BML) and recovered.

Lost Circulation/Overpressure Zo	ne: Top of overpressure estimated at 3550m RT. No lost circulation experienced.
	following mud density increase from 1650 kg/m3 to 1780 kg/m3 after 0.23 m3 gas
influx at 5404m	•
Equipment lest on Scalloor (Desc	ribe): None - Wellhead cut 2m below mudline and recovered
Provision for Re-entry (Describe a	nd attach sketch): N/A
Downhole Completion/Suspension	Equipment: N/A
	•
The undersigned Operator's Roperations undertaken at the absolution of the second of t	DECLARATION epresentative hereby declares that on the basis of personal knowledge of over named well, the above information is true, accurate and complete. Title: Drilling Project Manager Date: August 22, 2002 ACKNOWLEDGEMENT

.

·

. •

•

Part 4 Geological

PART 4: GEOLOGICAL

4.1 Formation Tops

Rotary Table Elevation: 24.00m Ground Elevation: -977.00m

Marker	Prognosis (mRT)	Sample Top (mRT)	Sample Top (mTVD)	Log Top (mRT)	Log Top (mTVD)	Subsea (m)	Thickness (m)
Base Pliocene	1,660	1,636	1,636	1,636	1,636	-1,612	883
Oligocene Unc.		2,519	2,519	2,519	2,519	-2,495	267
Eocene Chalk		2,786	2,786	2,786	2,786	-2,762	65
Base Tertiary	3,216	2,851	2,851	2,851	2,851	-2,827	128
Dawson Canyon Wyandot Petrel		2,979	2,979	2,979	2,979	-2,955	45
Cenomanian Unc.	3,714	3,024	3,024	3,024	3,024	-3,000	546
Logan Canyon Albian Marker		3,570	3,570	3,570	3,570	-3,546	340
Logan Canyon Prodelta Marker		3,910	3,910	3,910	3,910	-3,886	189
Sequence C	4,354	4,099	4,099	4,099	4,099	-4,075	187
Top Turbidite Facies		4,286	4,286	4,286	4,286	-4,262	164
Naskapi Member Equivalent		4,450	4,448	4,450	4,448	-4,424	111
Sequence B	4,786	4,561	4,553	4,561	4,553	-4,529	264
Verill Canyon		4,825	4,795	4,825	4,795	-4,771	200
Sequence A	5,344	5,025	4,973	5,025	4,973	-4,949	975
Basal Marker	6,264	6,000	5,912	6,000	5,912	-5,888	47
Base Sequence A	5,794	6,047	5,959	6,047	5,959	-5,935	

4.2 Geological Significance

Chevron et al Newburn H-23 tested a new play-type for the basin as well as testing >2000m of stratigraphy that had never been penetrated by any well in the offshore Nova Scotia.

Newburn H-23 established that the basin has source rock capable of generating hydrocarbons and that migration has occurred within the basin. Sands were encountered at several levels in the well, suggesting that sediment influx into the deepwater basin has occurred during various times. The well also provided an important calibration point for seismic velocities.

In addition to providing information on several risk aspects of the basin, the well also acquired data concerning sediment pressures and rock properties which will be useful for future well planning purposes.

4.3 <u>Lithological Summary</u>

Rotary Table Elevation: 24.00 Ground Elevation: -977.00

All depths are measured from Kelly Bushing Elevation

Tertiary

Base Pliocene

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	1,636	1,636	-1,612	883
Log Top	1,636	1,636	-1,612	

Evaluation:

Geological sampling and logging began in the Pliocene, after setting the 20" (508 mm) casing at 1902m. This formation consists predominately of Claystone; gray to gray green, soft to firm, fine glauconite grains, trace loose very fine quartz grains, and very fine disseminated pyrite. The mud gas readings generally remained low in the shale. A number of sidewall cores were taken in this section for biostratigraphic analysis and x-ray diffraction analysis. No visible porosity or shows are present in this section.

Conclusion:

No shows or reservoir capacity were noted in this section.

Oligocene Unconformity

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	2,519	2,519	-2,495	267
Log Top	2,519	2,519	-2,495	

Evaluation:

This marker was not detected in samples while drilling and the top is picked from wireline logs. The sediments encountered in this section are described as generally consisting of claystone which is gray, firm and blocky, amorphous, slightly silty, with common traces of disseminated pyrite, and trace carbonaceous flakes. There are also common thin beds of limestone, beige to gray white and greenish in part, with lime mudstone locally becoming partly crystalline, crumbly to firm and slightly hard in part, argillaceous with minor clear calcite. There is a significant colour change in the claystones from gray to light gray at approximately 2600m. The interval becomes more carbonate-rich at the base and a minor gas peak of 4.3% is associated with the limestone stringers at the base of this interval. The section appears to be normally pressured.

Conclusion:

Eocene Chalk

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	2,786	2,786	-2,762	65
Log Top	2,786	2,786	-2,762	

Evaluation:

The Eocene Chalk was marked by increased limestone content. The limestone is very light greenish gray, soft to firm, brittle, amorphous to subblocky, mudstone to locally packstone with very fine pyrite laminae. Occasionally the unit grades to marlstone with minor gray to brown, calcareous to marly claystone stringers and thin interbeds. No mudlog anomalies are noted through this zone and the section appears to be normally pressured.

Conclusion:

No shows or reservoir capacity were noted in this section.

Base Tertiary

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	2,851	2,851	-2,827	128
Log Top	2,851	2,851	-2,827	

Evaluation:

The Base Tertiary is marked by a transition zone from carbonates above to a sequence of consisting predominately of claystone. The claystone is medium gray to gray brown, subblocky, firm to moderately hard, brittle and very calcareous. Very fine disseminated pyrite and loose pyrite is common. Occasional glauconitic grains and carbonaceous specks are noted. Locally grading from claystone to shale. No mudlog anomalies are noted through this zone and no abnormal pressure was encountered.

Conclusion:

No shows or reservoir capacity were noted in this section.

Late Cretaceous

Dawson Canyon (Wyandot Petrel)

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	2,979	2,979	-2,955	45
Log Top	2,979	2,979	-2,955	

Evaluation:

Note originally listed in the prognosis as the well was predicted to penetrate the basinward shaly equivalent to this limestone unit. This top was picked based on wireline logs and it lithology is represented by medium gray to brownish gray claystone. The claystone is firm to blocky, partly marly, grading occasionally to siltstone with glauconite grains and carbonaceous flakes. Occasional thin limestones are

interbedded with the claystone. The mud gas log is low through this section and there are no intervals containing visible porosity or shows. The unit appears to be normally pressured.

Conclusion:

No shows or reservoir capacity were noted in this section.

Cenomanian Unconformity

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	3,024	3,024	-3,000	546
Log Top	3,024	3,024	-3,000	

Evaluation:

This is the only formation top that was actually picked based on samples while drilling this well. The Cenomanian unconformity was marked by a marked shift on the LWD gamma ray log. The shift on the log did not correspond with any significant change in the sample descriptions. The section below the unconformity is predominately claystone, brownish to gray in colour, firm to blocky in part, calcareous becoming occasionally marly, silty grading locally to siltstone with trace glauconite and common carbonaceous flakes and streaks. Occasional interbedded with a beige limestone. There is a slight mud gas peak (13%) at 3040m that is associated with limestone stringers and to a doubling of the ROP through this interval. The mud gas log through the remainder of the section is low and there are no intervals containing visible porosity or shows. No indications of abnormal pressure in the samples or on the mudlog.

Conclusion:

No shows or reservoir capacity were noted in this section.

Early Cretaceous

Logan Canyon (Albian Marker)

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	3,570	3,570	-3,546	340
Log Top	3,570	3,570	-3,546	

Evaluation:

There was no noticeable change in the samples from the overlying unit into this interval. The claystone is medium gray, block to platy in part, slightly amorphous, moderately calcareous, silty, with common trace carbonaceous flakes, occasional siltstone stringers and some trace pyrite. Thin, minor limestone stringers are present throughout this section. The mud gas log through the remainder of the section is low and there are no intervals containing visible porosity or shows. No indications of abnormal pressure in the samples or with connection gases.

Conclusion:

Logan Canyon (Prodelta Marker)

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	3,910	3,910	-3,886	189
Log Top	3,910	3,910	-3,886	

Evaluation:

This marker was not recognized while drilling, but was subsequently picked on logs. In hindsight, the marker is associated with the presence of thin dolomite interbeds. The dolomite beds are tan to beige, mudstone to partly cryptocrystalline, moderately hard to brittle with common carbonaceous streaks and rare trace chert. Towards the base of the unit the dolomite beds are replaced by calcareous stringers. The mud gas log through the remainder of the section is low with a slight increase in C3 near the bottom of this unit. There are no intervals containing visible porosity or shows. No indications of abnormal pressure in the samples or with connection gases.

Conclusion:

No shows or reservoir capacity were noted in this section.

Sequence C

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	4,099	4,099	-4,075	187
Log Top	4,099	4,099	-4,075	

Evaluation:

Another marker was not recognized while drilling, but was subsequently picked on logs. The corresponding lithology drilled at this depth consisted of claystone, brownish gray, blocky, slightly calcareous, silty, grading to siltstone in part, occasional limestone stringers, grading to marl, trace white calcareous siltstone. The limestone is light brown to tan, microcrystalline to partly mudstone, brittle, argillaceous, with trace glauconite. No mud gas anomalies through the section. There are no intervals containing visible porosity or shows. No indications of abnormal pressure in the samples or with connection gases.

Conclusion:

Top Turbidite Facies

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	4,099	4,099	-4,075	187
Log Top	4,099	4,099	-4,075	

Evaluation:

The top of the Turbidite Facies is marked by an increase in limestone stringers alternating with claystone beds. The claystone is brown, grayish brown, firm and blocky, silty, slightly calcareous with trace carbonaceous specks. The limestone is off white, grayish white, chalky, soft to crumbly, argillaceous, with trace carbonaceous flakes, glauconite and common interbeds of a silty white clay laminae. Lower in the interval, sandstone units are developed. Associated with the sandstone units is a continued increase in the gas cut mud while drilling despite raising the mud weights. Total gas readings reach as high as 20%.

Two sand-rich intervals were encountered. The upper sandstone interval is ~10m thick. In samples the sandstone was described as off white, partly buff, fine grained to occasional medium grained, subrounded, generally well sorted. The matrix contained white limestone and was partly argillaceous. Dead oil stains with dull yellow fluorescence and very slight weak white cut were noted. Sidewall cores were taken in this sand unit and in places the unit develops into a pebble conglomerate. The conglomerate matrix is a strongly calcareous very fine grained sand matrix with patchy porosity and no shows. A lower unit which appears shalier on logs is ~10m thick. It is also described as sandstone in the sidewall cores. This lower sandstone appears to be well cemented with calcite cement, although some patchy fair visible porosity is present, again with no shows. Routine core analyses of the sidewall cores in both sandstone intervals indicate porosities ranging up to 17%, with permeabilities generally less than 1 md but ranging as high as 42 md.

Conclusion:

Two gas-bearing, generally tight sandstone were encountered in this interval. Although non-commercial, these sandstones provided evidence that clastic sediments are reaching this basin, and that gas is being generated and migrating through this basin.

Naskapi Member Equivalent

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	4,450	4,447	-4,424	110
Log Top	4,450	4,447	-4,424	

Evaluation:

The samples from this interval are predominately claystone, light to medium gray, firm, subblocky, slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, some fine carbonaceous specks, locally grading to siltstone. No mud gas anomalies through the section. There are no intervals containing visible porosity or shows. No indications of abnormal pressure in the samples or with connection gases.

Conclusion:

Sequence B

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	4,561	4,553	-4,529	264
Log Top	4,561	4,553	-4,529	

Evaluation:

Sequence B is marked by the first encounter of shale which is light to medium gray, firm, subblocky, slightly calcareous, with silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks. It locally grades to siltstone. No mud gas anomalies through the section. There are no intervals containing visible porosity or shows. No indications of abnormal pressure in the samples or with connection gases.

Conclusion:

No shows or reservoir capacity were noted in this section.

Verill Canyon

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	4,825	4,795	-4,771	200
Log Top	4,825	4,795	-4,771	

Evaluation:

The Verill Canyon is a continuation of the shale sequence from above and was only distinguished on logs. The shale was medium to dark gray with a trace of gray brown, firm to moderately hard, brittle, subblocky, calcareous, with very fine carbonaceous specks, with traces of very fine disseminated pyrite, brown limestone stringers and white very calcareous sandy stringers. No mud gas anomalies through the section. There are no intervals containing visible porosity or shows. No indications of abnormal pressure in the samples or with connection gases.

Conclusion:

No shows or reservoir capacity were noted in this section.

Sequence A

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	5,025	4,973	-4,949	975
Log Top	5,025	4,973	-4,949	

Evaluation:

Sequence A was identified based on logs. The unit is predominately medium gray shale, firm, subblocky, brittle, very calcareous, with trace very fine disseminated pyrite and carbonaceous specks, trace calcareous veinlets, and trace light gray calcareous sandstone laminations.

There are occasional interbeds of sandstone ranging from a few meters to 13meters thick. The samples showed loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded and with poor visible porosity and no apparent shows in samples. The sandstone unit at 5405m was extensively sidewall cored and the porosities estimated from these cores range from 7% to 19% porosity, with permeabilities up to 6 md.

A couple of gas influxes were taken during the drilling from 5100md to 5425m. Twice the mud weight was raised in response to the influxes and eventually the continued high gas cut (~60%) prompted the running of the 7" liner.

Conclusion:

Thin sandstone units are present throughout this sequence. The sandstones appear to be gas bearing where encountered. The described porosity is generally poor although the sidewall cores from the sand at 5405m indicate porosities as high as 19% and permeabilities reaching 6 md.

Basal Marker

	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	6,000	5,912	-5,888	47
Log Top	6,000	5,912	-5,888	

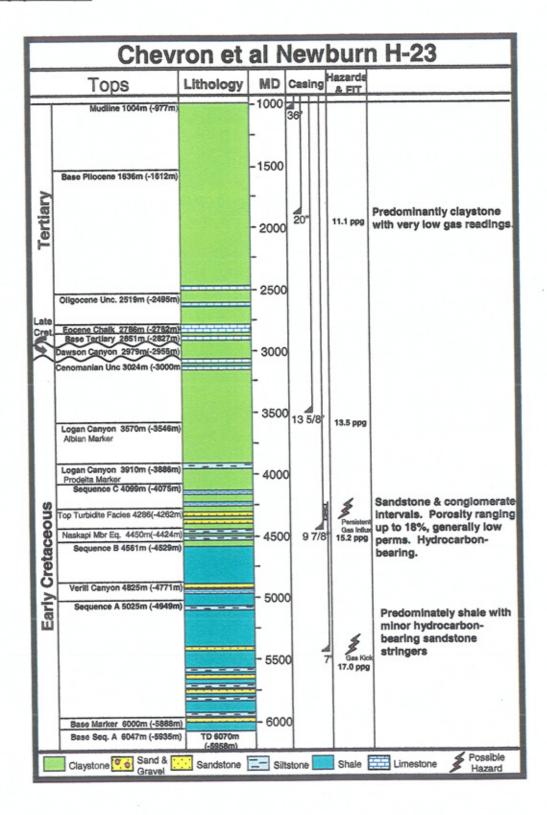
Evaluation:

The Basal Marker is seen in samples as a brown to gray brown shale, soft, calcareous with pyrite lenses and loose pyrite. There are minor light gray brown silty laminae and trace white limestone fragments. No mudgas anomalies through the section.

Conclusion:

No shows or reservoir capacity were noted in this section.

Base Sequence A


	Measured Depth (m)	True Vertical Depth (m)	Subsea (m)	Thickness (m)
Sample Top	6,047	5,959	-5,935	
Log Top	6,047	5,959	-5,935	

Evaluation:

The Base Sequence A is a light gray to gray brown shale, soft to firm, brittle, slightly calcareous, locally silty, with finely disseminated pyrite, trace carbonaceous specks and trace orange brown siderite.

Conclusion:

4.4 Stratigraphic Column

Part 5 Well Evaluation

PART 5: WELL EVALUATION

5.1 <u>Drill Cuttings</u>

Drill cuttings were collected every ten (10) meters from 1920m to 3510m and collected every five (5) meters from 3515m to 6070m (TD). Detailed drill cuttings lithology descriptions are contained in Appendix O.

5.1.1 Missing Drill Cuttings Samples:

Sample Type	Interval	Reason for Missing Sample
Bulk/Dried Samples	5380m to 5405m	Samples missing due to well control problems. Samples were collected but we had no ability to depth tie.
	6055m	Described at wellsite. Missing in transport.
Vial/Washed and Dried Samples	5380m to 5405m	Samples missing due to well control problems. Samples were collected but we had no ability to depth tie.
	6055m	Described at wellsite. Missing in transport.

5.1.2 The following analyses have been carried out on the Drill Cuttings Samples:

Analyses Type	Interval	Location of Analyses Results
Biostratigraphic Studies Performed on 125 gram sample of washed and dried cuttings	1920m to 6070m 30m sample interval	Appendix V.
Dielectric Constant Analysis Performed on 125 gram sample of washed and dried cuttings	1920m to 6070m 30m sample interval	Appendix W.
Fluid Inclusion Analysis Performed on 125 gram sample of washed and dried cuttings	1920m to 6070m 5m sample interval	Appendix X.
Vitrinite Reflectance Analysis Performed on 40 gram sample of unwashed and dried cuttings	1920 to 6070m 200m sample interval	Appendix Y.
Rock Eval Analysis Performed on 15 ml sample of washed and dried cuttings	3500 to 6070m Variable sample interval from 20m to 50m	Appendix Z.

5.1.3 <u>Distribution of Drill Cutting Samples</u>

The cuttings samples were taken at ten (10) meter intervals from 1920m to 3510m, and at five (5) meter intervals from 3515m to 6070m. The cutting samples were distributed as follows:

Sample Type	Interval	Recipient and No. of sets
One 8x12" plastic lined	Ten (10) meter intervals from	CNSOPB
cloth bag of unwashed and	1920m to 3510m, and at	Data Archive and Core Storage Facility
dried cuttings	Five (5) meter intervals from	201 Brownlow Avenue, Suite 27
	3515m to 6070m	Dartmouth, Nova Scotia
	33 13 in to 30 / 6 in	B3B 1W2 (1 set)
	T (10)	
One 5x7" plastic lined	Ten (10) meter intervals from	Conoco Canada 2410 C – 2 nd Avenue S.E.
cloth bag of unwashed and	1920m to 3510m, and at	i e
dried cuttings	Five (5) meter intervals from 3515m to 6070m	Calgary, Alberta
	3313m to 6070m	T2E 6J9 (1 set)
		Chevron Canada
		1204, 45 th Avenue N.E.
		Calgary, Alberta
		T2E 2P1 (1 set)
One 15ml vial of washed	Ten (10) meter intervals from	CNSOPB
and dried cuttings	1920m to 3510m, and at	Data Archive and Core Storage Facility
and dried callings	Five (5) meter intervals from	201 Brownlow Avenue, Suite 27
	3515m to 6070m	Dartmouth, Nova Scotia
		B3B 1W2 (1 set)
		Geological Survey of Canada
		Dept of Energy, Mines and Resources
		3303-33 rd Street N.W.
		Calgary, Alberta
		T2L 2A7 (1 set)
		Conoco Canada 2410 C – 2 nd Avenue S.E.
1		
j		Calgary, Alberta T2E 6J9 (1 set)
		12E 039 (1 set)
		Chevron Canada
		1204, 45 th Avenue N.E.
		Calgary, Alberta
		T2E 2P1 (1 set)
		, ,
		Petro-Canada
		2624, 150-6 th Avenue S.W.
		Calgary, Alberta
		T2P 3E3 (1 set)
One 25ml vial of washed	Ten (10) meter intervals from	CNSOPB
and dried cuttings	1920m to 3510m, and at	Data Archive and Core Storage Facility
_	Five (5) meter intervals from	201 Brownlow Avenue, Suite 27
	3515m to 6070m	Dartmouth, Nova Scotia
		B3B 1W2 (1 set)

In addition, the following samples were distributed for analyses:

Sample Type	Interval	Recipient and No. of sets
Biostratigraphic Studies One 125 gram sample in 5"x 7" plastic lined cloth bag containing washed and dried cuttings	Thirty (30) meter intervals from 1920m to 6070m	Global Geolab Ltd. 729b – 15 Street S.W. Medicine Hat, Alberta T1A 4W7 (1 set)
Dielectric Constant Analysis One 125 gram sample in 5"x 7" plastic lined cloth bag containing washed and dried cuttings	Thirty (30) meter intervals from 1920m to 6070m	En Laboratories Braeside of Keig Alford Aberdeenshire AB33 8BY (1 set)
Fluid Inclusion Analysis One 125 gram sample in 5"x 7" plastic lined cloth bag containing washed and dried cuttings	Five (5) meter intervals from 1920m to 6070m	C & M Storage 3311 Highway 77 South Schulenburg, Texas 78956 (1 set)
Vitrinite Reflectance Analysis One 40 gram sample in 5"x 7" plastic lined cloth bag containing unwashed and dried cuttings	Two hundred (200) meter intervals from 1920m to 6070m	Global GeoEnergy Research Ltd. 1657 Barrington Street, Suite 427 Halifax, Nova Scotia B3J 2A1 (1 set)

5.2 Mud Log Data

A high resolution gas-monitoring system that interfaced with the MWD/LWD was used to monitor gas and drilling activities on the rig. The drilling monitoring services began in the 1067mm (42") hole section. The gas monitoring began in the 431.8mm (17") hole section.

The Mud Log Report and a complete set of Mud Logs (1:600 & 1:240), Drilling Logs (1:240) and Pressure Logs (1:240) have been forwarded in a separate volume called Datalog Final Well Report, Chevron et al Newburn H-23, August 2002.

5.3 Conventional Core Data

No conventional cores were taken during well operations.

5.4 <u>Sidewall Cores</u>

A total of 80 sidewall cores were recovered out of 83 attempted using a rotary sidewall coring tool. A summary of the coring activities and detailed Sidewall Core Descriptions are located in Appendix P.

5.4.1 The following table summarizes the analyses have been carried out on the Sidewall Core Samples:

Analysis	Core Samples	Location of Analyses Results
Biostratigraphic Analysis (43 cores analyzed)	431.8mm (17") hole section Cores # 1-25 317.5mm (12 ¼") hole section Cores # 1-5, 7, 9,19-24 216mm (8 ½") hole section Cores # 1, 14, 20 165mm (6 ½") hole section Cores # 7, 8	Appendix V.
Routine Core Analysis (24 cores analyzed)	431.8mm (17") hole section No cores 317.5mm (12 ¼") hole section Cores # 6, 8, 10-18 216mm (8 ½") hole section Cores # 8-12, 24 165mm (6 ½") hole section Cores # 1-6, 9	Appendix S.
X-ray Diffraction Analysis (49 cores analyzed)	431.8mm (17") hole section Cores # 5-8, 10 317.5mm (12 ½") hole section Cores # 2-3, 5-6, 8, 10-18, 22, 24 216mm (8 ½") hole section Cores # 2-6, 8-12, 14-16, 18-25 165mm (6 ½") hole section Cores # 1-6, 9	Appendix T.
Whole Core Photos (37 cores photographed)	431.8mm (17") hole section No cores 317.5mm (12 1/4") hole section Cores # 6, 8, 10-18 216mm (8 1/2") hole section Cores #2-6,8-12, 15-16, 18-19, 21-25 165mm (6 1/2") hole section Cores # 1-6, 9	On CD only in Appendix U.
Thin Section Photos (37 cores sectioned)	431.8mm (17") hole section No cores 317.5mm (12 ½") hole section Cores # 6, 8, 10-18 216mm (8 ½") hole section Cores #2-6,8-12, 15-16, 18-19, 21-25 165mm (6 ½") hole section Cores # 1-6, 9	Appendix U.
Rock Eval (57 cores analyzed)	431.8mm (17") hole section Cores #1-25 317.5mm (12 1/4") hole section Cores # 1-5, 7,9, 12, 18-24 216mm (8 1/2") hole section Cores # 1-6, 14-16, 18-23, 25 165mm (6 1/2") hole section Cores # 7,8	Appendix W.

5.5 <u>LWD Log Data</u>

The following LWD logs were recorded in the Newburn H-23 well:

Hole Section	Logs Recorded
660.4mm (26") hole section	ARCLWD (GR-Res) Drilling Timelog
431.8mm (17") hole section	ARCLWD (GR-Res) Drilling Timelog
317.5mm (12 1/4") hole section	ARCLWD (GR-Res) ISONIC Drilling Timelog
216mm (8 ½") hole section	ARCLWD (GR-Res) ISONIC Drilling Timelog
165mm (6 ½") hole section	ARCLWD (GR-Res) (Failed over last 250m of hole) Drilling Timelog

5.6 <u>Wireline Log Data</u>

The following wireline logs were recorded in Newburn H-23. See Appendix Q for Wireline Logging Reports.

Hole Section	Logs Recorded
431.8mm (17") hole section	Descent #1: PEX-DIS-EMS
(June 12, 2002)	(GR, Array Induction, N/D, Dipole Sonic and Environ.)
	Descent #2: GR-CSAT-CSAT-CSAT (Zero Offset VSP)
	Descent #3: GR-MSCT (Rotary Sidewall Coring Tool)
317.5mm (12 1/4") hole section	Descent #1: AIT-DSI-LDT-CNL-NGS-EMS
(June 25, 2002)	(SpectralGR, Array Induction, N/D, Dipole Sonic and Environ.)
	Descent #2: GR-MDT (Formation Tester)
	Descent #3: GR-OBMI-CIS (Oil based MicroImager)
	Descent #4: GR-MSCT (Rotary Sidewall Coring Tool)
216mm (8 ½") hole section	Descent #1: OBMI-LDT-CNL-HNGS (did not get to bottom)
(July 18, 2002)	(SpectralGR, N/D, Oil based MicroImager)
	Descent #2: GR-CMR (Magnetic Resonance Log)
	Descent #3: GR-LDT-CNL (N/D over bottom of open hole)
	Descent #4: GR-MSCT (Rotary Sidewall Coring Tool)
177.8mm (7") cased hole	Descent #5: GR-CSAT-CSAT-DSI
(July 30 th , 2002)	(Zero Offset VSP and Dipole Sonic through casing)
165mm (6 ½") hole section	Descent #1: GR-DSI-AIT (GR, Dipole Sonic, Array Induction)
(August 10, 2002)	Descent #2: GR-CNL-LDT (GR, Neutron/Density)
	Descent #3: GR-MSCT (Rotary Sidewall Coring Tool) (Failed)
	Descent #4: GR-MSCT (Rotary Sidewall Coring Tool) (Failed)
	Descent #5: GR-MSCT (Rotary Sidewall Coring Tool) (8 cores)
	Descent #6: GR-MSCT (Rotary Sidewall Coring Tool) (1 core)
	Descent #7: GR-MSCT (Rotary Sidewall Coring Tool) (Failed)

5.7 Velocity Surveys

Two zero offset VSP surveys were conducted by Schlumberger of Canada in this well.

The first VSP was carried out on June 12th, 2002 in the 431.8mm (17") open hole section. The survey was run as a single run from 3515m to 1865m, with a 15m sample interval from 3515m to 1865m and a 100m sample interval from 1800m to 1400m. A sample was shot at 1200m and at the mudline at 1000m. Twenty-one checkshot levels were recorded in Run #1.

The second VSP was carried out over the 177.8mm (7") liner cased hole section on July 30th. The survey was run as a single run from 5415m to 3360m. A total of 142 levels were acquired. Three checkshot levels at 985m, 1000m and 1015m, plus overlapping levels with Run #1 for quality control purposes were taken. No downgoing checkshots were taken in either VSP run.

The data was acquired using the three component triple CSAT down hole tool equipped with GAC accelerometers. The G-gun Itaga (4 x 40 cu in and 4 x 150 cu in capacity) was used as a source and fired at 2000 psi air pressure. The source was positioned 5m below the SRD seal level, the same as the hydrophone. An attempt was made to make the source position similar for both runs however the 300 deg azimuth used in Run #1 was not achieved because of sea conditions. The gun and hydrophone azimuth in Run #2 was 285.

A complete description of the data acquisition and processing of both VSP runs has been forwarded in a separate volume called Chevron et al Newburn H-23, Field Mahone, Nova Scotia Canada. Borehole Seismic Survey, 12 June 2002.

5.8 Wireline Formation Tests

Twelve pressure points were attempted in the 317.5mm (12 $\frac{1}{4}$ ") hole section. Eleven of the pressure points had a lost seal, and the remaining pressure point was tight. Details concerning the testing intervals and results are documented in Appendix R.

5.9 <u>Drill Stem Tests</u>

No Drill Stem Tests were carried out on Newburn H-23.

Appendix A Weather Conditions & Vessel Response

Appendix A Weather conditions and vessel response

હ ဗ္က ဓ ဓ ဓ ဓ Day ន ន ន g g ಜ Sig. Combined See Height (metres) (Sec) boled evaW ₹0.4 € 01 ← 0 Significant Wave Height (netres) 2.5 Wind Dir. (degrees) 20 30 0 0 Swell Period (sec) (sentem) trigleH tlew2

Deepwater Millennium, Response to Ex., Jule Environmental Data, Newburn H-23 Plot of Daily Maximums, May 20, 2002 to May 31, 2002

ဓ စ္က ဓ 8 8 8 Day 윉 g ដ ଷ See Surface Temperature act (C) seergeb) - -0.5 (seengebe flatific O C C (seergeb) flofi O TO 5. 5. (O seergeb) enumerement si.

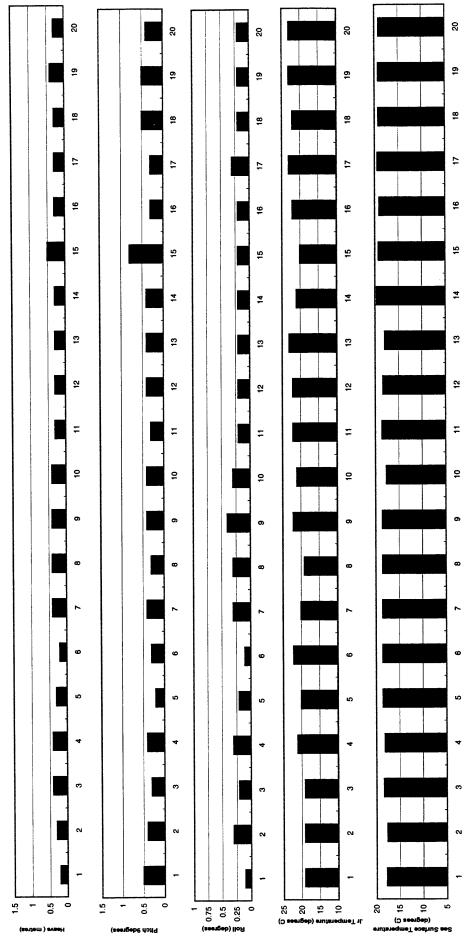
Deepwater Millennium, Response to E. ... e Environmental Data, Newburn H-23 Plot of Dally Maximums, May 20, 2002 to May 31, 2002

ဗ ဓ ဓ 8 ន ຊ ន ន ន ន # # ₽ 15 Day16 € 얼 Ξ Ξ Ξ Ξ Ξ Ξ = œ / ß S က က က က က N N N Q Q Q, 2.5 1.5 1.5 0.5 0.5 4 0 0 **&** 9 3.5 270 180 90 Swell Height (metres) Swell Period (sec) (zertem) Sig. Combined Sea Height (metres) Wave Polod (sec) Wind Dir. (degrees) Mind Speed (knots) Significant Wave Height

Deepwater Millennium, Response to L....eme Environmental Data, Newburn H-23 Plot of Dally Maximums, June 01, 2002 to June 30, 2002

ဗ ဓ ജ 8 ន ន ຮ ន ន Day 4 헏 ₽ ß က က က က က N N Q 0.5 0.5 0.5 -5. 5. ß (3 seergeb) C 75 0 (C Temperature (degrees C) Pitch 9degrees)

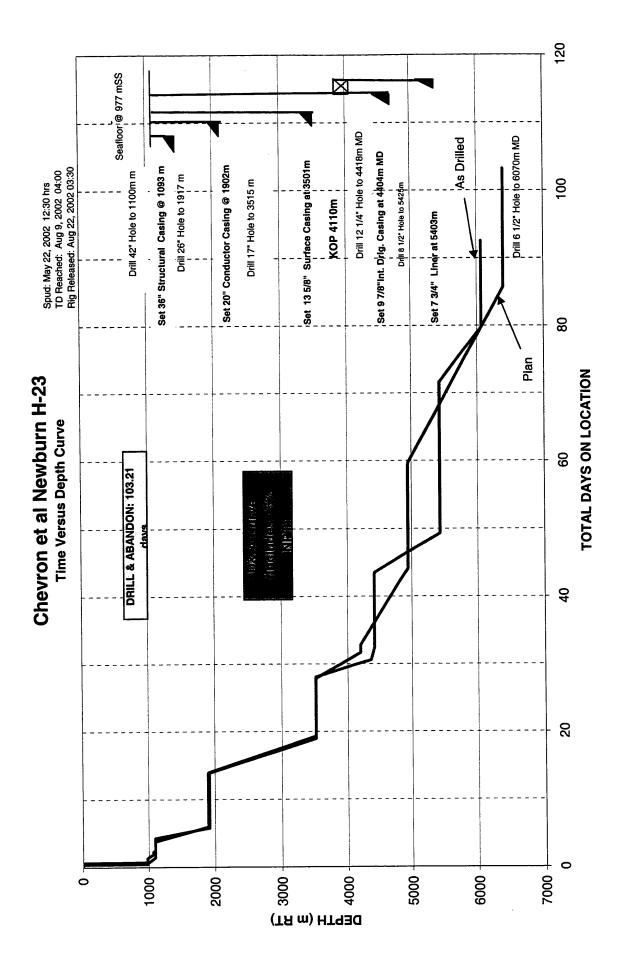
Deepwater Millennium, Response to Extreme Environmental Data, Newburn H-23 Plot of Daily Maximums, June 01, 2002 to June 30, 2002


<u>8</u> ಕ 8 ଷ ಜ ŧ Ξ Ξ Ξ Ξ ₽ æ ß S ဗ က Q N negmeT example sec (C) seergeb) 5. 0.5 2 5 0.5 () s 0.5 (zeergeb) lloA 1.5 Pitch (degrees) (sentem) evseH

Deepwater Millennium, Response to Ext. Environmental Data, Newburn H-23 Plot of Dally Maximums, July 01, 2002 to July 31, 2002

₽ \$ Ξ Ξ Ξ = Ξ Ξ Ξ Day ₽ ß က က 2.5 0.5 0.5 (atomi) beeds brifW 5. -270 180 0 2.5 2 £ Sig. Combined See Height (metres) Significant Wave Height (metres) Wave Pelod (sec) Wind Dir. (degrees) Swell Height (metres) (see) behed (sec)

Deepwater Millennium, Response to Extreme Environmental Data, Newburn H-23 Plot of Dally Maximums, August 01, 2002 to August 20, 2002


Deepwater Millennium, Response to Extreme Environmental Data, Newburn H-23 Plot of Dally Maximums, August 01, 2002 to August 20, 2002

Appendix B Daily Drilling Report Time-Depth Curve

Appendix B
Daily Drilling Reports/ Time-Depth Curve

		,

				and the second

Newburn

Mahone

H-23

Newburn

H-23

3-May-02

Mahone

Chevron et al Newburn H-23

4-May-02

Chevron et al Newburn H-23

5-May-02

Exploration

Chevron et al Newburn H-23

Chevron et al Newburn H-23

Exploration

Chevron et al Newburn H-23

\$0.00

DW Millennium

5,164.94

EL 2359

voletion Cos

0.00

Com Well Cont

Total Appr.

Chevron et al Newburn H-23

API Numbe

T Robichaux / J Bruton / T Gilbert

9-May-02

\$2,356,380.00

504-592-3316

88.48

\$0.00

Exploration

0.00

Canada

Daily Comp Cost

lulk Gel, m³:

504-592-3316

Chevron et al Newburn H-23

10-May-02

DW Milleonium

EL 2359

Exploration

Chevron et al Newburn H-23

Exploration

Chevron et al Newburn H-23

Exploration

13-May-02

Chevron et al Newburn H-23

Exploration

Exploration

·--

16-May-02

Chevron et al Newburn H-23

17-May-02

Chevron Canada Resources Proposed TVD: Measured Depth: 0 m 0 m 0 m Daily Rot Hrs: Total Rot Hrs: Spud Date: DOL Daily meters: 0.0 0.0 0 m 16 0-Jan-00 Last BOP Test: P/U Weight: S/O WI Rot Wt: Torque: 0 0 ast Casing Size Set At Yes □ No 0 m 0 m Whipstock Set @ Cum Rot Hrs on Casing Since Last Caliper Cum Rot Hrs on Casing: 0.0 MO īVn TVD MO Liner Size: 0 m 0 m 0 m 0 m Mud M-I Type: 1920.8 134 26.0 28/46 Water base spud mud FC(1/32) API/HTHP: pit CO: WL API: ABT: % Oit HTHP iolids: tr 9.0 92.0 0.0 6.0 8.0 3.0 % DS/Bent Ca/Mg Bent: 0.00 120.0 0.6 0.11/0.2 8.100 Engr Service hrs: Trin Cl Max Gas: Trip Gas: Orlg Gas: Size No. Size TFA, cm³ MD In MD Out TVD Out Туре IADC Serial Number Bit No. Size Manufacturer 0.0 0 0.0 0 m 0 m 0 m 0 0 m 0 m 0 0.0 0.0 ?Pull Cost/meter O-Row DC Hours WOB RPM **HRow** Loc otal Length of BHA: BHA Description IDC Size. DP Size, mm: 50 Bit Cost Row 1 0 Time.hr DP AV, m/min DC AV, m/n Pump HHP SPM Press, bar liter/min Jet Vel, m/sec BIL HHP BHHP/SQ. IN. m⁴STK Bit Liner, mm Stroke, meters 0 0 n 0 E/W Coordinate Vertical Section DLS TVD N/S Coordinate Direction Survey MD Angle 0.0 m 0.0 m 0.0 m (From -To) Operations Covering 24 Hours Ending at Midnight hh:mm In Transit to anchorage point A near Halifax Harbor. Postion @ 06:00 42,05 N 65,4.6 W. Heading 027*. Avg speed last 24 hrs: 10.6 knts. 0:00 - 6:00 6:00 18:00 6:00 24:00 Work day begin. Return to two tour work day. P/U 27.7# 6-5/8" DP and fix hydraulic leak on PHM. BOP work - inclement weather stopped work inside SEA's. Successfully tested the ST locks (lock operator chambers to 1500 psi for 5 min). . In house modification on the flotation stops has been completed on ten joints of riser. R/D kelly hose, tighten, R/U same. Successfully tested the mud line and swivel packing to 5000 psi for 5 minutes. Successfully tested the upper and lower IBOP to 12000 psi for 5 minutes. Continue Swaco R/U (estimated work 70% completed). Note: Arrived at anchorage point A @ 2230 hrs. Note: Drew Taylor received verbal approval for the DPA and the ADW from the CNSOPB. In transit to, and arrive at, anchor point A. Continue BOP PM work. P/U 6-5/8" DP - 38 stds total P/U and in derrick. Continue Swaco installation. Offload work boats and conduct personnel transfers at anchorage point. Sail to Newburn H-23 location. Continue to P/U DP as operations allow. Continue Swaco R/U. Continue BOP PM work Safety NAR Held pre-tour safety meeting with both crews. Issues: WBS Element No. (Drig) Daily Drilling Cost: Daily Mud Cost: Daily Tangible Cost: RWFEC-R2251 \$2,050.00 \$25,739.36 \$349,354.36 WBS Element No. (Comp) Cum Drilling Cost Cum Mud Cost: Cum Tangible Cost: \$8,137,841,19 \$25,739.36 \$1,589,089.18 Curn Completion Cost Cum Well Cost Daily Comp Cost \$8,137,841.19 API Number. Bulk Gel, m3: 0.00 4.451.48 166.96 Country: DW Millennium (902) 496 3018 Robichaus/Rultenschild/CDA/AJG/H-LB/BWL

Chevron et al Newburn H-23

Canada

Exploration

E L 2359

Drilling Activity Report (si)

Measure		Carrac	ia ite	30010		0.				vron e	t ai.	Newt				L	rilling /	activity F	Report (metric)		
l			-	TVD:						PBTD: Proposed MD:							6,400 m				
DOL:	17		FS:			Spud	Date:	:		Daily meters:					Daily R	ot Hrs:		6,315 m HS Total Rot Hrs:			
Torque: Nm		Drag: MT		Rot Wt: P/U Weight: MT MT						S/O Wt: Last BOP Test; MT								POB:			
Last Cas	ing Size:			Set At:			100.1		MD			TVD	Shoe Test, kg/	m ^{),}		Leakof	7 🗔	129			
Cum Rot	Hrs on C	asing:		10	Cum Roi	t Hrs on	Casin	o Since L	ast Calip	er:		Whit	ostock S	1				Yes KOP:	s		
Liner Size	9:			Set At:					MD				TVD	Liner Top At:				<u> </u>			
	Mud Co: A4 1 Type:									Camala	F			Cilier TOD AL.							
Mud Co: WL API:	M-I	Water base spud mud								Sample		Pit	Wt. kg/m³		FV:	116	PV: 28	YP:	Gel: 14/15		
	NC	<u> </u>	0.0 FC(1/32) API/HTHP: 2.4						Solids:	3.0	*	OW:		% Water:	% Water: 93.0 % Sand: TF			MBT, Kg/L 3.	89 PH: 7.8		
Pm: 0.6 Pf/Mf: Carb: CI: 8,000						Ca/Mg:	120	Be	nt:		Solids % HG/L	.G:		24hr A	g SOC %:						
Engr Service Meterials added last 1 24 hrs:																					
								· · · · · · · · · · · · · · · · · · ·													
Drig Gas	rig Gas: Max Gas: Conn. Gas: Trip Gas:											Trip CI: Remarks:									
Bit No.	1400	8124	+-			Т.	<u> </u>		T-	-	_	lets, mn	1	 		i					
Bit NO.	IADC	Size	 	Manufact	urer	S	erial N	umber	Тур	•		ize No		TFA, cm²		MD in		MD Out	TVD Out		
											\perp			į							
meters	Ho	urs	WOB	RPM	,	-Row	어	Row	DC		Loc	T	В	G		Char		?Pull	Cost/meter		
					\top					$\neg \vdash$		\top							1		
					\top				 	_		\top		t	 				1		
Total Len	gth of Bi	łA;		<u> </u>	ВН	A Desc	ription	:						<u> </u>	<u> </u>		L		-L		
												····									
Bit Cost	Row 1		Row 2		Rig			Trip		100	Size,			DP Size, mm;		1 140		Lin Sin	-14		
5		0		٥	/hr			Time,hr		mr				OF SIZE, Hill.		Hours Jar		Hrs Sinc			
BK	Lin	er, mm	Stro	ke, meter	s m	r/STK	SP	M Pre	ss, KPa	liter/min Jet Vel, m/ser				DP AV, m/mir	DP AV, m/min DC AV, m/min			BHHP/SQ. I	N. Pump HHP		
											Т										
								\neg			T				1						
S	urvey Mi	5	Ang	le	Direc	tion		TVD			N/S	Coordin	nate	EWC	E/W Coordinate Vertic			al Section, m	DLS, 9/30m		
																					
														<u> </u>							
 -							-							 							
Hrs.	(Fron	n -To)	_							<u> </u>				<u> </u>							
	hh:	mm	┼											urs Ending at M							
12:00	0:00	12:00	Mainta	in positio	on w/ D	P@(a	nchor	age "A"	- LAT: 4	4, 28.4	N LO	NG: 63	, 25.6 V	V. Unload and	1 backlos	d Hebr	on Sea w/ fu	II international	l trash		
		•	skips -	release	HS @	0615.	Bring	in Maer	sk Chan	celior &	take	on Clas	ss "G" b	ulk cement. C	Continue	d to pict	c up 6 5/8", 2	7.7# DP - 42s	ids total		
		•	picked	up. AB	S surve	yor on	rig co	onducting	g COF o	ondition	s sur	rey. Co	ontinue	to R/U Swaco	, Anadril	and Da	italog equipr	nent.			
12:00	12:00	24:00	Mainta	in positio	on w/ D	P@(a	nchor	age "A"	- LAT: 4	4, 28.9	N LO	NG: 63	, 26.0 V	V. Continue to	take on	Class'	"G" cmt and	drill water fr/ C	Chancellor.		
		•	Unioad	d contain	ers and	d deck	cargo	, backlo	oad emp	ty conta	iners.	P/U 3	2 stds d	of 6 5/8", 40.94	DP. Hi	-Tech u	pgrading dra	wworks AHC.			
			1 "															t comms gear			
		-																			
			BOP V	Vork: Inc	stalled I	Bardev	arm	hydrauli	c hases i	n moon	pool	Comol	eteri et	and for the SE	A P/T	-rine e-	als on FCP	s 9 and 10 in 1	the		
			1																		
			į.															FCR's. Rece	:ive0		
			Treplace	ement F	or and	begin	msta	ning ther	n on the	yellow :	DEA.	AH SPA	res ord	ered fr/ Schaff	er have	arrived	on board Mi	lennium.			
			+-																		
 	 		 																		
 -		•	Note:	Drew Ta	ylor rec	ceived	writte	n author	ization "	No. 755	31.3°	for the	DPA ar	nd ADW by J.E	E. Dickey	of CNS	SOPB.				
24 hr Su	mmen.	<u> </u>																			
	у.	Remain	at anch	orage ur	nloadin	g boats	s and	conduct	ing crew	change	s. P/	<u>U 6 5/8</u>	" DP. F	VU Swaco, Ar	nadril and	d Datak	og equipmen	t. Cont BOP	work w/		
WEST :	upervis													ition gear.							
Proje Opera	cted															la.					
		2011.01	. readility		F/U	J 3/8	JF.	10 42	ursa. U	ornect i	3 FU (18	a com	···ui iiC8l	tion gear. Set	Sell TOF	-ewbun	17-23 locati	Un.			
Salety Held one hour and the market with the salety salety and the salety salet																					
Issues: Held pre-tour safety meeting with both crews. No pollution sightings reported.										NAR											
Daily Mu	d Cost:			Daily Tar	naible C	ost:				Daily Fo	m Ev	d Cost				ال معاد	illing Cost:	<u>i</u>			
Cum Muc		\$2,8	00.00					\$34,2	00.95										\$649,875.95		
		\$1,591	,889.18	Cum Tar		uet.		\$34,2	00.95	Cum Fo	···· EVE						Ming Cost:		\$8,761,977.78		
9. de C c										L						Total Ap			79,476,759.83		
Bulk Gel, m³		17	3.4	Cement, m ³		371.		Fuel. m³	4,326		ik Wt,	1	67.0				Chevro	n %:	66.7		
Country:							Fög:			W		-			Dritting	Reps:					

Chevron et al. Newburn H-23

19-May-02

Chev	ron (Canad	la Re	sourc	es			Che	vron	et a	I. Ne	wbu	ırn H	-23		Di	rilling /	Activity Re	port (metric)		
Measured DOL:	sured Depth: TVD: L: [DFS: Soud Date:						PBTO:								6,400	ed TVD:	6,315 m				
Torque:	18	Drag:	JF 3:	Spud Date: Rot Wt: P/U Weight:				S/O Wt: Last BOP Test:						Daily R	Ot Hrs:		HS Total Rot Hrs: POB:				
Nm Last Casi	no Size:	MT		MT MT			MO	MT						.3.		Leakof	126				
Cum Rot		asing:			um Rot Hrs o	n Casi	na Since		er:		- F	Whips	tock Se		n-;		Leako	KOP:	□No		
Liner Size				Set At:				MD			1			Liner Top At:				MD .	īVD		
Mud Car				Туре:					Samp	ole Fro	m:		Wt,	l	FV.	P	v	YP.	Gel:		
Mud Co: WL API,		HTHP:		FC(1/32)	Water b	ase sp	oud mud	Solids:	<u> </u>		% Oil:	Pit	kg/m³	1032 % Water:	s/qt	110 cl % Sand:	23	Ib/100ft ² 43	14/15 pH:		
cc/30min Pm:	NC	PI/MI:	0.0		arb:	CI:	2.4	Ca/Mg:	3.		Bent:			Solids % HG/L0	97.0	L	TR I24hr A	Kg/L 3.59			
Engr Sen	0.6 vice			0.18 is added la			8,000	1	16	BO											
		1	24 hrs:																		
Drig Gas	:		Max Ga	ıs:		Conn	n. Gas:			Trip G	as:			Trip CI:		IR	emarks:	***************************************			
Bit No.	IADC	Size	+	Menufactu		Serial N		T 7				, mm		TFA, cm²	T	MD In	1	MD Out	TVD Out		
Bit NO.		34.6	┼	meridiacio	-	Series in		Тур	-	No.	Size	No.	Size	IFA, UIF	 	MU III		MD OOL			
			+					+			-1		├─	 	-		+				
meters	Ho	urs	WOB	RPM	I-Row	Το	-Row	DO	;		×	-	<u>!</u> В	G		Char	_	?Pull	Cost/meter		
					_	Ť		+	\dashv		一			l	\vdash						
				 		\top			_		一			l			1				
Total Len	igth of 81	1A:			BHA Des	cription);														
		4.																			
		,					,							lon a							
Bit Cost \$	Row 1	0	Row 2	0	Rig\$ /hr		Trip Time,h	ar .		DC Si mm:	ze.			DP Size, mm:		Hours (On :	Hrs Since L Inspection			
Bit	Lin	er, mm	Stro	ke, meters	m²/STK	SPM Press, KPa		liter/	/min	Jet	Vel, m	vsec .	DP AV, m/min	DC AV	, m/min	Bit HHP	BHHP/SQ. IN.	Pump HHP			
			ļ		_	↓	_		<u> </u>	_					ļ			<u> </u>			
<u> </u>	L		<u> </u>			╀			ļ												
<u> </u>	Survey MI		Ang	le	Direction	╄-	TVE	TVD N/S Coordina					ite	E/W Coordinate			Vertical Section, m DI		DLS, 730m		
ļ						╄													╬		
├									+												
Hrs.	(From		Code						<u></u>	Ope	erations	s Cove	ering 24	Hours Ending a	t Midnigl			· · · · · · · · · · · · · · · · · · ·			
6:00		- 06:00	,	Maintain	position @	anche	orage "A	" w/ DP,	LAT:	44-28	3.9N, I	LONG	63-2	6.0 W. Cont to	P/U 3	2 stds of	6 5/8", 40.9	# DP. Organize	6 5/8"		
		•		27.7# in	the derrick	w/ PH	M. Hi-T	ech upgr	ading	draw	works	AHC	. Offic	ad Chancellor	deck c	argo, ba	ckload em	oty containers.			
6:00	6:00	12:00					# landing string. M/U cmt head w/ TIW's & MWD w/ 42" hole opener using pipe deck bucking machine.														
6:00	12:00	- 18:00	,									ABS surveyor on rig conducting COF conditions survey. 9N, LONG: 63-26.1 W. Cont to P/U 6 5/8", 40.9# landing string. P/U 5 stds of									
		•		T														hoot communica			
6:00	18:00	24:00	-					P/U 1 std of 9 1/2" DC's and 42" stab. P/U 5", 19.5# DP for cmt stinger. Communiction functioning w/											ing w/		
	-	•	+-							inning the rig 360 degree's - both dish's tracking. Hebron Sea on location @ surveyor back - released HS @ 23:15. Pull and secure fenders - prepare to depart											
														hancellor and							
	<u> </u>	<u>. </u>	+																		
 	 	<u> </u>	+															points. Replaced ns. Replaced be			
								e probe cables on the BOP. P/T o-ring seals on new FCR's to 4500 psi for the yellow pod. Removed blue SEA, set up in engine room and begin re													
	<u> </u>	•	_																		
	 	:	+-	Since -	idnicht Sei	art for	m anaba	vane lace	ation "	Δ" ~*	00-30	Feti	mated	ETA to Newbu	ım H-2'	3 Incation	is 15:00				
		•			aumyrit. Odl			naya IUC	-u	<u></u>	50.30	. =30				- ~~6101					
<u> </u>	<u> </u>	•		Operation	ons @ 0500	hrs: P	7U 5" DI	P while s	ailing (for Ne	wbun	n H2:	locati	ion.							
 	14 hr	Maints	in positio	n 60 and	horage "A" :	w/ DP	P/(184	5/8" DP 1	andin	a strir	na. HV	VDP :	and DC	's as required	. Trout	ieshoot :	and conner	t communication	18		
	nmary:													ourn H-23 locat							
									ponde	ers w/	ROV.	Con	duct s	eabed survey.	Confin	m positio	n w/ rig po	sitioners. Spud v	reil.		
<u> </u>		_			oint, wiper					M 14	eld on	p	rioh es	afety and proce	edurae :	meetinge		T			
	afety Sues:		h crews.		o roporteu.	ро		-gridings f	SPOI 16	. ri	on pr	- 100	, j-v- 54	and proce				Accidents:	NAR		
Daily Mu		\$2,8	800.00	Daily Tar	ngible Cost:		\$45.	,775.00	Daily	Form	Eval C	ost.					Delly Drilling Cost: \$3,607,318.00				
Cum Mu			4,689.18	Cum Tan	gible Cost:			975.95	Cum	um Form Eval Cost:							ling Cost:		2,369,295.78		
Chevron			56.7				-		L,	A						Total Ap	pr:	\$79	9,476,759.83		
Bulk Gel m ³		17	73.4	Cement, m³	37		Fuel, m ³	3,92	0.5	Bulk V	w.	16	37.0	<u> </u>	le	Darri					
Country:	:					Rig:			Į.	UWI:					Dritting	reps:	_				

Chevron et al. Newburn H-23

20-May-02

DW Millennium

EL 2359

Chevron et al. Newburn H-23

21-May-02

Canada

DW Millennium

EL 2359

Exploration

Chevron et al. Newburn H-23

Exploration

Chevron et al. Newburn H-23

Exploration

Chevron et al. Newburn H-23

Canada

EL 2350

Chevron et al. Newburn H-23

25-May-02

Carada

DW Millennium

EL 2350

Chevron et al. Newburn H-23

Exploration

EJ, 2350

orth/Liuthus

27-May-02

Chevron et al. Newburn H-23

28-May-02

Canada

Exploration

EL 2359

300H234320080450

Chevron et al. Newburn H-23

EL 2359

Exploration

Jones/Curran/Alworth/Liuticus

Chevron et al. Newburn H-23

Canada

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al. Newburn H-23

Jones/Current/

orthLiuteus

El. 2350

Chevron et al. Newburn H-23

30014234320060450

EL 2358

Exploration

Chevron et al. Newburn H-23

Jones/Curren/Alworth/Liutique

DW Millennium

EL 2350

Chevron et al. Newburn H-23

Canada

Chevron et al. Newburn H-23

4-Jun-02

Chev	ron C	anad	a Res	ource	es				Chevr	on et a	ıl. Ne	wbur	n H-	23				Activ	ity Re	port	(metric)
Measured	Depth:		2,27	/9 m	TVO	:	2,279	PI	BTD:			1	Propos	ed MD:		6,400	Propo	sed TVD:		6.3	15 m
DOL:		lD	FS:	3 III		Spud				Daily	neters:				Daily Ro			HS Total	Rot Hrs:		
	34			15		L			May-02					260 m	Ļ		18.			2	6.0
Torque: Nm		Drag: kdaN		Rot Wt: kdaN	2		P/U Weigi kdaN		208 kd	OWt:	20		Last B	OP Test:	02	2-Jun-02		POB:		1	23
Last Casi		XUBIN	0.0	Set At:		<u>, , , , , , , , , , , , , , , , , , , </u>	NUBI Y	м					TVD I	Shoe Test, kg/m			Leek	477 F] Yes		√] No
		508	mm				,902 m			1	,902 r	71				130	9		J . G		3.60
Cum Rot	Hrs on Ca	sing:	26	3.0 K	Cum Rot I	Hrs on	Casing Si	ince Last	Caliper:		ľ	Whipsto	CK Sel	t @:				KOP:			
Liner Size):			Set At:				M	D				TVD	Liner Top At:				MD			3
				Тура:				-	Is	ample Fro			Wt.		FV.	16	> V.	YP.		Gel	
Mud Co:	M-I			,,,,,	Svn	thetic-	-based		۲	шр.с			kg/m²	1152	s/qt		.e` 30		11	Pa	11/18
WL API,		ITHP:		FC(1/32)				S	olids:		% Oil:			% Water:		% Sand:		MBT.		pH:	
cc/30min			7.8	mm			1.6			8.0			66.0		26.0	<u> </u>		27 Kg/L	0.00	<u> </u>	
Psm:	2.2	ES, volts	14	175 G	Carb:	- 1	Ct 49	9,000 C	a/Mg:		ASG:	3.6	io	Solids % HG/LG	i:		2414	Avg SOC %	.:	4.8	B3
Engr Sen				is added l	ast																
		2	24 hrs:				568 ea 4	5kg bag	g Barite		280 c	u mete	rs Par	radrill SBM							
Drig Gas		240	Max Ga	3S:	,	252	Conn. Ga	is:	0	Trip G	33:	0		Trip Ct:		0	Remarks				
	Г Т		+			1	<u> </u>				Jets	, mm			_			MD Out		7.0	
Bit No.	MDC	Size	1	Manufact	urer	Se	erial Numb	Der	Туре	No	Size	No. S	ize	TFA, mm³	<u></u>	MD In		MU UU		TVD	OU.
3	S222	432	STO	C-Geodia	mond	T	JS-7947	,	S91VP	(9	13	0	0	1140	۱	1,917 m	i				
۰	JAZZ	432	1	<i>7</i> -060016		+-	30-73-7		031117	` -		1									
ļ							,					╙		ļ	├—						
meters	Hou	ırs	WOB, kdaN	RPM	H	Row	O-Row	.	DC	l	oc i	8		G	l	Cher		?Pull	- 1	Cost/r	meter
	 			 	+		\vdash			_		—					\neg			en	E 52
362	26.	00	0.9	180	' -		 			-		 		 	├─		\dashv			\$2,50	FJ.34
												<u> </u>		<u> </u>	L						
Total Ler	ngth of BH	A:	322	.97 m	BHV	A Desc	ription:		PDC Rie	Slick YP	5/6 m	otor f	oat su	b, 429mm Stal	b. ARC	900. Po	weroulse !	AWD. XA	, NMDC	(w/ Tota	o rina)
<u> </u>		- 8																			<u>84,</u>
429mm	Stab, 3	241mm	DC's, X/	0, 3 - 21	Omm D	C's, X	/O, 3 - 16	8mm H	WDP, J	er, 20 - 1	68mm	HWD	<u> </u>								
L																		_,			
Bit Cost	Row 1	139,000	Row 2		Rig	\$ \$24		Trip	6.0	DC S	₹ Z 0.	24	11	DP Size, mm:	168	Hours		Hrs Sir	nce Last Ir	nspection:	: 62
1-3			+		/hr		T 11	ime,hr		mm:						Jan		+	- :	T _	
Bit	Line	er, mm	Stre	oke, meter	us m	4STK	SPM	Pres	s, KPa	liter/min	Jet	Vel, m/	Sec	DP AV, m/min	DC AV	/, m/min	Bit HHP	814	HP/mm²	Pur	np HHP
3	ļ .	165		0.3556	0	0221	204	24	476	4518		65.9		36.00	45	5.00	281	79	98.25	1 2	472
Ť	 	.00	+	0.5000	─ <u>*</u>			+	110												
<u> </u>	<u> </u>						┼──				Ь				٠					-	
1	Survey Mi	'	An	gle	Direct	tion	1	₹VD		N/	S Coor	dinate		EW Co	pordinate	•	Ve	tical Section	1, M	DLS	s, °/30m
	10E 24	_	•	20	245	40	-	195.20 r			1.19	•		1	.83			-0.33 m		Τ,	0.10
⊢	2,195.21	" 	0.2	29	345.	. 10	 	195.201	"					1				_		-	
	2,223.50	m	0.3	27	322.	.13	2.	223.50 r	m		1.3	2		1	.28			-0.21 m		4	0.12
1 2	2,251.31	m	0.	17	321.	.71	2.	251.30 i	m İ		1.40	0		1 1	.21			-0.10 m		1 0	0.11
Hrs.	(Fron	n -To)	Code	T						0	peratio	ns Cove	ering 2	4 Hours Ending	at Midnig	ght					
-	hh:				2040	2057		26	- 2 - 4-1		<u> </u>										
1:30		- 1:30					7 m (avg								- 14						
0:30	1:30	- 2:00	24 T											le working on u							
5:30	2:00	- 7:30	02											tempt to preve							
1:00	7:30	- 8:30	24 T	SWAC	O duste	r unit 1	torquing	up and:	stalling o	out causi	ng cut	tings to	back	up at unit. Cin	culate h	nole at 6	0 spm whi	e working	ou ednib	ment	
1:00	8:30	- 9:30	02	Drill f/	2149 m	- 2158	B m (ROF	= 9 m/	hr) at co	ntrolled i	ROP w	vhile m	onitori	ing SWACO ed	quipmen	nt					
3:30	9:30	- 13:00	24 T											ax & Houston,			. Circ @ 9	0 spm & w	rork pipe	while w	orking.
2:00		- 15:00												nitoring SWAC							
0:30	15:00	- 15:30													4-2-1	·					
-	+						ittings dr		10		mile d f	900	hile -	naitorina CIA/A	CO	uinman*					
0:30	1.0.00	- 16:00							(Q M/NE)	es conti	- Date (W CO	· 146 11	onitoring SWA	641	-portalit.					
0:30		16:30					uttings dr														
7:30	16:30	0:00	02	Orill 1/	2185 m	- 2279	9 m (avg	ROP =	12.5 m/h	ır) while	monito	oring S	WACC	O cuttings drye	f.						
L				\perp																	
	1																				
	+		+	+									-								
\vdash	+		+	+-																	
	+-			+-																	
 				-																	
L																					
L	L			Opera	tions @	0500	hrs: Drill	to 2321	m (AVC	ROP =	21 m	/hr). SV	WACO	equip down (9 0200	hrs. Wo	rking on S	WACO			
	24 hr	Drill fo	om 2019	m to 22	79 m. St	nut do	wn 5 diffe	erent tim	nes (total	NPT = (hrs) v	working	on S	WACO duster	cutting	s dryer.					
	immary:	1																			
-		Deill 44	2450 -	Incress	a LINA	1222	kale +	- meta-	accord!	no to we	inht	n scher	tule a	nd make short	trio						
	rojected erations:	J-1111 10	2730 M		- MAA (C	, :222	- varcons				-gr-(-u)										
<u> </u>		+					-											Accide	ents:		140
	Safety					<u> </u>	ion sighti	ngs repo	orted. He	ed daily	pre-tou	ır & 58	ety m	eeungs.				Sefety			MR .
	saves:	Stand	by Vesse	al is the n			9 8 .					-				To:		3	-vep	Bal	lasch
Daily N	Aud Cost	\$2	19,746	Daily T	angible (Cost:		\$2,4	125	Daily For	m Eval	Cost:		\$14,095.00			rilling Cost			\$866,6	82
Cum N	Aud Cost:			Cum T	angible (ost				Cum Fon	n Evel	Cost				Cum D	rilling Cost			\$23,155,	151
<u></u>		\$1,	656,757	+				\$1,024	4,321			-	:	\$173,705.00		Total A	por:				
			66.7	- 1												ــــــــــــــــــــــــــــــــــــــ	···			579,476 ,	,/60
Chevro			00.7			_															
Bulk G				Cemer	nt,	474		uel.	2 550		t Wt.	44	12 7				ı				
Bulk G	iel,		28.3	m³	nt.	172	2.2 n	n,	3,558	.8 m³			32.7		Oritin	g Reps:	L_	ter 1	C		
	iel,		28.3		nt,			n,	3,558 Aillenniur	.8 m³				4320060450		g Reps:		Jones /	Curran /	Bruton 5-Jun-	

Exploration

300H234320060450

Chevron et al. Newburn H-23

DW Millennium

EL 2359

Jones / Curran / Bruton

6-Jun-02

ountry:

Canada

		anad	a Res	ource				vron et	al. N	ewbu	rn H-	23			g Activity R	eport (metric)
Measured	Depth:		2,54	17 m	100:	2,547	PBTD:				Propo	sed MD:	6,40	Prop () m	osed TVD:	6,315 m
DOL:	36	C	IFS:	17	Spud	Date:	22-May-0	2 Daily	meters	i:		103 m	Daily Rot Hrs:	8.	HS Total Rot Hrs	t: 45.5
Tarque: Nm	6779	Drag: kdaN	2.7	Rot Wt: kdaN	221	P/U Weight kdaN	223	S/O Wt:	2	19	Last 8	OP Test:	02-Jun-0	2	POB:	123
Last Casi			mm	Set At:		,902 m	MD		1,902		TVD	Shoe Test, kg/m	3.	Leak	uoff? ☐ Yes	 ☑ No
Cum Rot	Hrs on Ca			Cu			ce Last Calipe		1,502	Whips	ock Se	t @:	130	<u> </u>	KOP:	
Liner Size	Ε.		45	Set At:			MD		-	L	TVD	Liner Top At:			MD	TVD
				Тура:				Sample Fr	om:	_	Wt.		FV.	PV.	IYP.	Gel.
Mud Co:					Synthetic	-based	Y			Pits	kg/m²	1224	s/qt 173	cP 3	7 Pe 13	Pa 13/23
WL API, cc/30min	ľ	HTHP:	7.4	FC(1/32) A	PVHTHP:	1.6	Solids:	8.4	% Oil:	:	65.0	% Water:	26.6 % Sand		MBT. 27 Kg/L 0.00	pH:
Psm:	1.4	ES, volts	9	13 Car	b	CI: 43,	000 Ca/Mg:		ASG:	4.	10	Solids % HG/LG			Avg SOC %:	4.35
Engr Sen			Material	s added las	1				4				40 - 11			
		2	24 hrs:			1200 sx B	sante		4 CU	m base	OH	•	40 sx Lime			
Drig Gas:			Max Ga	ıs:		Conn. Gas	: -	Trip	Gas:			Trip Ct:		Remarks:		
		406	+		554	<u> </u>	. 0		Jet	s, mm	<u> </u>	 	0	L		756.
Bit No.	IADC	Size		Manufacture	s s	erial Numbe	т тур	B N	o. Size	No.	Size	TFA, mm³	MD In		MD Out	TVD Out
3	S222	432	STO	-Geodiam	ond	JS-7947	S91V	PX 9	13	•	٥	1140	1,917 m			
									<u> </u>	<u> </u>	<u> </u>	ļ				
meters	Ho	urs	WOB, kdaN	RPM	I-Row	O-Row	DC	. .	Loc		В	G	Char	- 1	?Pull	Cost/meter
630	45.	50	2.2	173				1								\$2,182.54
- 100					1											
Total Len	gth of BH	A:	222	97 m	BHA Desc	ription:		Click VC	5.66 ~	2000	ost su	h 420mm Stat	APC 000 P		MWD, X/O, NMDC	(w/ Totoo doo)
420	Chab 2	244			OCI- V		Smm HWDP,					10, 42311111 Star	D, 7410 300, 11	JNG/PUISE	NIVE, AC, NIEC	(100 10000 1000)
*25mm	3180, 3 ·	- 24 Imm	UC 3. AV	U, 3 - 210F	nm DC S, A	70, 3 - 160	mm HVVDP,	Jar, 20 -	1 DOLLHI	HVV						
Bit Cost	Row 1	139,000	Row 2	0	Rig\$ 57	1,000 T	np 6.0	DC S	Size,	- 2	41	DP Size, mm:	168 Hour	s On as	.5 Hrs Since Last I	Inspection: 81.5
3			+		/hr	Tirr	16,14	jmm:					Ja	rs:		
Bit	Line	er, mm	Stro	ke, meters	m³/STK	SPM	Press, KPa	liter/min	Je	t Vel. m	/sec	DP AV, m/min	DC AV, m/min	Bit HHP	8HHP/mm²	Pump HHP
3		165	4	0.3556	0.0221	205	21994	4540		66.2		37.00	45.00	303	860.67	2232
		₋ -			<u> </u>	<u> </u>	<u> </u>		<u>l. </u>							
	urvey Mi	2	Ang	le	Direction		TVD	N	/S Coo	rdinate		E/W Co	ordinate	Ve	rtical Section, m	DLS, 930m
2	509.46	m	0.1	5	214.22	2,50	9.45 m		1.6	9		1.	32		-0.01 m	0.15
2	538.40	m	0.1	7	218.75	2,53	38.39 m	<u> </u>	1.6	3		1.	27	<u> </u>	-0.01 m	0.02
2	566.94	m	0.2	:9	223.33	2,56	66.93 m		1.5	4		1.	19		0.00 m	0.13
Hrs.		n -To) mm	Code					C	Operatio	ons Cov	ering 2	4 Hours Ending a	st Midnight			•
0:30	0:00	- 0:30	2	Drill f/ 24	44 m - 245	1 m (avg R	ROP = 14 m/t	nr) at redu	ced ra	te whil	e mon	itoring SWACC	equipment.			
0:30	0:30	- 1:00	24 T	Work on	SWACO e	quipment.	Continue to v	vork pipe	and ci	rculate	@ 55	spm.				
1:30	1:00	- 2:30	2				OP = 16.7 π								·	
4:30		- 7:00	1 1				W to 1222 kg									
2:00		- 9:00	5	_								1 f/ 2336 m - 1				
4:30 2:00	9:00	- 13:30 - 15:30		+											grate over end of a ing battery life 20 h	
1.00	13.30	- 13.50	127				vhile circulati		gpiii		CO 010		Merios. Comina		ing battery ind 20 i	
0:30	15:30	- 16:00	5	 	33 m - 219			<u> </u>								
1:30	16:00	- 17:30					on bottom									
1:30	17:30	- 19:00	2	Drill f/ 24	76 m - 249	9 m (avg F	ROP = 11.5 m	v/hr) at red	duced	ROP w	hile m	nonitoring SWA	CO equipment			
0:30	19:00		24 T		SWACO e											
4:30	19:30	- 0:00	2	Drill 1/ 24	99 m - 254	7 m (avg F	ROP = 10.7 m	hr) at re	duced	ROP	while	monitoring SW	ACO equipme	nt.		
<u> </u>	 	<u> </u>		ļ												
├ ─	├		+-	 		 										
			+-													
			+	 										•••		
	†		1-	Operation	ns @ 0500	hrs: Driffing	g @ 2625 m	(Avg ROP	since	midnit	e = 15	i.6 m/hr)				
	4 hr	Drill ff 2	2444 m -	2476 m. C	irculate and	d increase	MW to 1222	kg/m³. Ma	ke wip	er trip	to 508	mm csg shoe	. Repair SWA0	O equipm	ent. TIH and resur	ne
Sun	nmary:	drilling	¥ 2476 n	n - 2547 m												
	jected rations:	Drill														
\vdash		No	idonte	inglide:	la ac#'-	ainhtir	annered the	d della		L 00.5-1	. ====	tione			Accidents:	
	alety sues:						reported. Hel					@ 23:10 hrs. I	Response time	46 sec	Safety Rep:	NAR Balasch
Daily Mu				Daily Tang			` 	Daily Fon						hilling Cost		
Cum Mu	d Cost:		3,089	Cum Tang			\$2,425	Cum For	n Eval	Cost		263,782.50	Cum D	nilling Cost		\$819,712
Chevror			89,562	 			1,029,171	+			\$	451,582.50	Total A	ppr:		\$24,552,290
Bulk Ge			36.7	Cement.		Fue	ι.	Bulk	Wt,			T		T		\$79,476,760
m³ Country		2	8.3	m³	172		3,47				7.2	<u> </u>	Onling Reps:			
			Ca	nada	- 6-		DW Millenniu	ım jurri		30		4320060450			Jones / Curran / Date:	
Field:		Eval	vation		Lea		FI 235	:a			Well:	Chevro	n et al. Newbu	m H-23	I	7-Jun-02

Exploration

EL 2359

300H234320060450 Orilling Reps:

| Well: Chevron et al. Newburn H-23

300H234320060450

Chevron et al. Newburn H-23

Jones / Curran / Bruton

8-Jun-02

DW Millennium

EL 2359

Canada

Chevron et al. Newburn H-23

9-Jun-02

Canada

EL 2359

Canada

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

iones / Curran / Bruton

Canada

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

Jones / Curran / Bruton

		Canad	a Res	source				vron et	al. N							Report (metric)
Measured	Depth:			15 m	TVD:	3,515 m	PBTD:		_		Propor	sed MO:	6,40	Proo	osed TVD:	6,315 m
DOL:	41		DFS:	22		d Date:	22-May-0)2	meters		_	0 m	Daily Rot Hrs:	0.0	HS Total Rot H	
Torque: Nm		Drag: kdaN		Rot Wt: kdaN		P/U Weight: kdaN		S/O Wt: kdaN			Last B	3OP Test:	02-Jun-0		POB:	126
Last Casi	ng Size:			Set At:		1,902 m	MD		1,902		TVD	Shoe Test, kg/m		Leak	coff? ☐ Yes	
Cum Rot	Hrs on C			19.0 Cur		n Casing Since	e Last Calipe			Whipst	ock Se	x @:		05 1	кор:	
Liner Size):			Set At:			MO		_	<u> </u>	TVD	Liner Top At			MD	TVD
Mud Co:				Туре:				Sample Fro	om:		Wt.			PV.	YP.	Gel,
WL API,		нтнр:		FC(1/32) AI	Synthetic APVHTHP:	-based	Solids:	L	% Oil:	Pits	kg/m²	1236 % Water:	s/qt 189 SWR:	cP 26	6 Pa 14	
cc/30min				mm		2.4		9.7			66.0	ł	24.3		26 Kg/L 0.0	o i
Psm:	2.3	ES, volts		003 Car		CI: 41,00	Ca/Mg:		ASG:	4.2	20	Solids % HG/LC	3:	24hr	Avg SOC %:	No Cuttings last 24 hr
Engr Sen	rice	2	Material 24 hrs:	als added last		150 sx Baril	ito									
											_					
Orlg Gas:			Max Ga	45:		Conn. Gas:		Trip C	Gas:			Trip Ct		Remarks:		
Bit No.	MDC	Size		Manufacture	er S	Serial Number	Туре	e No		s, mm s No. S	Cire.	TFA, mm²	MD In	\Box	MD Out	TVD Out
3	S222	432	+=	C Goodian		JS-7947	S91VI		1	0	0	1140	1 917 m	_	2 515 m	2 516 m
	3222	432	+ *:-	C-Geodiam	ona	79-1341	39161	~+~	13		٣	1140	1,917 m		3,515 m	3,515 m
meters		ours	WOB,	RPM	I-Row	O-Row	DC DC					G	3,515 m		?Pull	Cartimates
11,01013			kdaN		177.00	U-NOW	——	┿	Loc	 				-	/PUII	Cost/meter
1598	119	9.00	4.4	220	2	1	СТ		N	, ×		1	 	——	TD	\$2,054.44
Total Lan	with of Bit	<u>-</u>		Щ_	BHA Desc	-inting:				Щ		<u> </u>	<u> </u>			
	gui or		322	2.97 m	DFW Desc	прион.	PDC Bit	t, Slick XP	5/6 m	iotor, fi	oat su	ıb, 429mm Stal	b, ARC 900, Po	owerpulse I	WD, XO, NMD	C (w/ Totco ring)
429mm	Stab, 3	<u>- 241mm</u>	DC's, X/	O, 3 - 210r	mm DC's, X	VO, 3 - 168m	ım HWDP,	Jar, 20 - 1	168mm	HWD	<u> </u>					
			· Carrie			- 1 +		100.5				Tan 3:	- 1 11			
Bit Cost \$	Row 1	139,000	0 Row 2	2 0	Rig\$ \$24 /hr	4,000 Trip Time,		O DC S		24	i1	DP Size, mm;	168 Hour		5 Hrs Since Last	t Inspection: 155
Bit	Lin	er, mm	Stre	oke, meters	m ⁴ /STK	SPM I	Press, KPa	liter/min	Jer	t Vel, m/	sec	DP AV, m/min	DC AV, m/min	Bit HHP	BHHP/mm²	Pump HHP
3		165		0.3556	0.0221	237	29992	5249		76.5		42.00	52.00	472	1342.95	3519
					1											
	Survey M(0	Ang	gle	Direction	T	VD	N	/S Coor	rdinate		E/W Cc	oordinate	Ver	tical Section, m	DLS, 9/30m
												 		†		
						 		\vdash			_			 		
		\neg				 		 				 				-
Hrs.		m -To)	Code)oeratic	ns Covi	aring 2	4 Hours Ending a	at Midnight		· · · · · · ·	
0:30	00:00	- 0:30			e to circulate	e bottoms up	@3515 m.		-		_			-		
3:30	0:30	- 4:00							and co	ontinue	to P.C	O.O.H. # 3365	m inside csg s	hoe @ 190'	2 m. Check Flow.	
2:30	4:00	- 6:30	5	Continue	e to P.O.O.H	I. to B.H.A.										
2:00		- 8:30			H. w/ B.H.A.											
0:30		- 9:00		+		d on top drive	<u> </u>					<u></u>				
1:30 0:30		- 10:30 - 11:00		+	O.O.H. w/ B			14 -re joh	fahr	atic		OOD TOE and	Cahlimhamer			
1:30	11:00					ooks in rotary t		a pre-jou s	Sarety	meeu.	9 *** 0	JUN, FOR BING	Schlumberger	Dersonner		
9:00	12:30				#1: Quad C		LOVE.									
2:30	21:30			+	d Combo to										A	
			\perp	<u> </u>												
<u> </u>	<u> </u>		—	 												
	 		-	 												
	├		+	+												
	 		+	+												<u> </u>
		-	1	 												
				P.O. @ (05:00 13-Ju	ine: Running	VSP Log									
			Ι_	<u> </u>												
	4 hr nmery:	P.O.0	.H. to log	j. Log Run /	#1: Quad Co	ombo.										
<u> </u>		Contin	form	-1 evalu	-ti-s emper	- till-ing \	'CO lea and		*11	to						
	jected rations:		Ut rorma	(IOn evalua	100n progra	am utilizing V	SP log and	rotary sur	ewan .	2016 IL.	Ж5.					
s	efety	No acc	idents, n	o incident.	No pollutio	n sightings re	eported. He	ld daily pr	re-tour	& safe	ty mer	etings.			Accidents:	NAR
	oues:				Bona Vista.		******				, .				Safety Rep:	HL Balasch
Daily Mu	d Cost	\$!	9,083	Daily Tang	pible Cost:		\$14,815	Daily Form	n Evel (Cost	-,	\$32,973.33	Deily D	oriting Cost:		\$688,636
Cum Mu	d Cost:		368,482	Cum Tangi	jible Cost:		1,103,137	Cum Form	n Evel (Cost		626,489.16	Cum Dr	rilling Cost		\$27,773,163
Chevron	% :		86.7				.100	†				020,-000.	Total A	opr:		\$79,476,760
Bulk Gel				Cement,	245	Fuel	4.42	Bulk	Wt.			Rig Heave, m	Pitch,			
Country:			28.3	lm³	318.	Ria:	4,430	LWE	:		4.7		0.3 deg Oriting Reps:	0.2 deg	0.2	12-4
Field:			Ca	anada	Lees		W Millenniu	<u>m </u>			Well:	4320060450	<u> </u>		Robichaux / Curra Date:	in / Bruton

300H234320060450 |Well: Chevi

Chevron et al Newburn H-23

12-Jun-02

EL 2359

		anad	da Res	source	es				Che	vron el	al. N	ewbu	rn H-	23		Dril			eport (metric)
Measured	Depth:		3,5	15 m	ΤV	VD:	3,5	15 m	PBTD:				Propos	ed MD:		00 m	Propose		6,315 m
OOL:	42		DFS:	23		Spud			22-May-0	2	ly meters	s:		0 m	Daily Rot Hrs:		0.0	HS Total Rot Hrs	119.0
Forque: Nm		Drag: kdaN		Rot Wt: kdaN			P/U W kdaN	eight:		S/O Wt: kdaN			Last B	OP Test:	02-Jun-	02		POB:	126
Nm Last Casir			8 mm	Set At:			,902 n		MD		1,902			Shoe Test, kg/n	າ ³ : 1	309	Leekoff?	Yes	Ø₩o
Cum Rot I		asing:	11	9.0 1	Jum Ro	ot Hrs on	Casin	g Since L	ast Calipe	r.		Whips	lock Se					KOP:	
Liner Size				Set At:					MD					Liner Top At	+2			MD	TVD
Mud Co:	M-I			Type:	S	ynthetic-	-base	d		Sample f		Pits	₩t, kg/m²	1236		PV. cP		YP, Ps 14	Gel, Pa 17/22
WL API, cc/30min		HTHP:	7.2	FC(1/32) mm	APVH	THP:		2.4	Solids:	9.7	% Oil	k	65.0	% Water:	25.3 SWR:		73 / 27	MBT, Kg/L 0.00	pH:
Psm:	2.3	ES, volts			Carb:		CI:	41,000	Ca/Mg:		ASG:	4.	20	Solids % HG/L				SOC %:	No Cuttings last 24 hr
Engr Sen		2	Materia 24 hrs:	is added i	est									-					
- 1																			
Drig Gas:			Max G	95:			Conn.	Gas:		Trip	Gas:			Trip Ct:		Rema	rks:		
Bit No.	IADC	Size		Manufact	urer	Se	erial N	umber	Тур	• ,		is, mm e No.	Size	TFA, mm²	MD Ir	1		MD Out	TVD Out
						T					T	0	0						
meters	Н	urs	WOB, kdaN	RPM	Т	l-Row	ОI	Row	DC		Loc		В	G	Char			?Pull	Cost/meter
				0	T														
					\Box														
Total Lan	gth of Bi	IA:			8	SHA Desc	ription	:											
										100	Size.			DP Size, mm:	l us	urs On			
Bit Cost S	Row 1	0	Row 2	0		tig\$ \$24 hr	.000	Trip Time.h		mn		2	41		100	lars:	155	Hrs Since Last	
Bit	Lir	er, mm	Str	oke, meter	•	m4STK	SF	M P	ress, KPa	liter/mi	n Je	t Vel, rr	/sec	DP AV, m/min	DC AV, m/m	in Bi	HHP	BHHP/mm²	Pump HHP
		165		0.3556	4	0.0221		_		ļ	—				<u> </u>	-			
<u> </u>	<u> </u>		Н.				<u> </u>			-						+-	Madian	1000000	
<u> </u>	Survey M	D	An An	gle	Dire	ection	⊢	TVE	,	├	N/S Coo	ordinate		EWC	oordinate	+	Vertica	l Section, m	DLS, */30m
			├				┝			├				ļ		+			
			 				-			├				 		+-			+
Hrs.		m -To)	Code							J	Operati	ons Cov	ering 2	4 Hours Ending	at Midnight				
13:30		:mm - 13:3		 	ue Lo	g run #2	: VSF	,											
1:30	13:30	- 15:0	0 25						sidewall										
7:30	15:00 22:30								. Recove	or 25 of 2	5 cores	S .							
1:30	22:30	- 24:0	0 25	100 3	JIUWIII	berger k	oggin	y tools.									*		
	I^-		_	1															
																			
<u> </u>	├																		
<u> </u>	-			1				··											**************************************
<u></u>	 			—															
\vdash	├			+-															
			+	+															
<u> </u>	 			Cinco	midai	aht Dil	1/ VA	ADDT.	Wash BC	OD and S									
\vdash	+					00 14-Ju				or and c					-				
	24 hr	Log	Run #2: \	/SP and	Log R	un #3: n	otary	sidewall	cores.										·····
-	mmery:	Rate	ieve NBP	and non	13-5/9	" caeina													· · · · · · · · · · · · · · · · · · ·
	ojected erations:	1.000		J. 1011			<u> </u>												
	afety		ccidents, i										ety me	etings.				Accidents:	NAR
	sues: ud Cost	Stan	dby Vesse	l is the m			. Hel				0 secon				Deit	Dritting	Cost	Safety Rep:	HL Balasch
1	ud Cost		\$8,025	Cum Tr					1,876		orm Eval			\$29,523.33	111	Drilling			\$609,559
Chevro		\$1	.867,424	+				\$1,	140,198_	+				\$623,039.16		l Appr			\$27,694,086 \$79,476,760
Buik Ge			66.7	Cemen	ŧ,			Fuel.			ulk Wt,			Rig Heave, m			Roll.		#13,410,10U
m³ Country	r.		28.3	m³		318	Rig:	m,	4,38	U	ı WI:		64.7	1	0.3 de Ontling Repo		3 deg	0.3 bichaux / Curra	n / Bodoc
Field			C Noration	anada		Les		DV	/ Millenni FL 23				Welt	14320060450 Chev	ron et al New	burn H-		Date:	13-Jun-02

Exploration

Chevron et al Newburn H-23

		anad	a Res	ource					vron et	al. N	ewbu	ırn H	-23			Dril	ling	Activit	y Re	port (metric)
Measured	Depth:		3,51	5 m	TVD:		3,515 m	PBTD:				Propo	sed MD:		6.40) m	Propose	d TVD:		6,315 m
DOL:	25	D	FS:	24		Spud Da		22-May-0	Daily	meters	8 :		0 m	Daily R			0.0	HS Total F	ot Hrs:	119.0
Torque:		Drag:		Rot Wt:		PΛ	Weight:	ZZ-May-U	S/O Wt:			Last B	IOP Test:	<u>. </u>			0.0	POB:		119.0
Nm Last Casi	oo Size:	kdaN		kdaN Set At:		kda	N .	140	kdaN			1		,	2-Jun-0	2				119
		508	mm			1,90		MD		1,902			Shoe Test, kg/n	n":	130	9	Leskoff	<u> </u>	'es	⊘ ‰
Cum Rot	Hrs on Ca	asing:	119	9.0	um Rot H	irs on Ca	sing Since	Last Calipe	V C -		Whips	tock Se	rt @:					KOP:		
Liner Size):			Set At:				MD				TVD	Liner Top At:		-			MD		TVD
Mud Co:				Туре:			٠.		Sample Fr	om:		Wt,	<u> </u>	FV.		PV.	-	YP.		Gel.
Mud Co: WL API,		HTHP:		FO(4 MD)		hetic-ba	sed	In re-	<u> </u>	IN 01	Pits	kg/m²	1236	s/qt		сР	26	Ps	14	Pa 17/22
cc/30min	1	nine.		FC(1/32) / mm	WYNT I TH	-	2.4	Solids:	9.4	% Oil:	•	65.0	% Water:	25.6	SWR:		73 / 27	M8T. Kg/L	0.00	pH:
Psm:	2.3	ES, volts	90)4 C	erb:	CI:	41,00	Ca/Mg:		ASG:	4	20	Solids % HG/LC					SOC %:	K	io Cuttings last 24 hr
Engr Sen			Material	s added la	st					Ь							L			
		2	24 hrs:			20	8 m³ liqui	d CaCl2		58.2	m³ Ba:	se Oil		50 sx	VG-Plus			40 sx Lirr	10	
12 drum Drig Gas:		nul		s EMI-15	7		ails Clear	1-ир	1=		sx Bari	te	I= - 0							
ong oas	· 		Max Ga	s.			nn. Gas:		Trip				Trip Ct:			Remai	KS:			
Bit No.	MDC	Size		Manufactu	ner	Serial	Number	Тур	• _N		s, mm e No.	Size	TFA, mm²		MD In			MD Out		TVD Out
									- ''	1	Т	T							\dashv	
			 		-			 		+-	-	-		├					\dashv	
		—	WOB.		_			+		<u> </u>	╄	<u> </u>							-	
meters	Ho	ırs	kdaN	RPM	I-R	ow)-Row	DC		Loc		В	G	<u> </u>	Char			?Pull		Cost/meter
				0		ļ		1	- 1		1									
Total Len	gth of BH	A:			BHA	Descripti	on:				•—		•							
																				
Bit Cost	Dow 1		Row 2		Iniae		744		IDC S	Sin.a.			IDP Size, mm:			-				
3		0	NOW 2	0	Rig\$ /hr	\$24,000	Trip Time,	r	mm:	A40,	2	41	OF 3128, 11811.	168	Hour: Jar		155	Hrs Since	Last in	spection: 155
Bit	Line	er, mm	Strol	ke, meters	m ³ /S	зтк 📗	SPM P	ress, KPa	liter/min	Je	t Vei, m	/sec	DP AV, m/min	DC AV	/, m/min	Bit	HHP	Вине	mm²	Pump HHP
	-	65		3556	0.02	221			İ					Г						<u> </u>
			╁	7.5550	1 0.0	-				t				 						
١	Luneau MC			ь Т		_				<u> </u>			FAMIC				Maratan			
	Survey MC	' 	Ang	-	Directio	" 	TVI	,	 "	/S Coor	Unide		E/W Co	ordinate	•		Vertica	Section, m		DLS, 9/30m
									ļ											
<u></u>									<u> </u>											<u> </u>
									1.											
Hrs.	(From		Code						C)peratio	ons Cov	ering 2	4 Hours Ending a	at Midniq	ght					
1:00		- 1:00	12	R/U to T	TH w/ A	BB-VG	VBRRT.								•					
2:30	1:00	- 3:30-	5	TIH w/ v	vash sul), 1 std	OP and W	BRRT to	top of BO	Ρ.										
1:30	3:30	- 5:00	12	Wash B	OP, SS	WH. Pu	np slug. L	atch NBP	. Pull free	w/ 13	dN							************		
3:00	5:00	- 8:00	5	РООН																
4:00	8:00	- 12:00	20 T	Rig Rep	air: Rota	ating he	ad on TD:	S. Trouble	shoot san	ne. Un	able to	repair	r. Will R/U to ru	ın casir	ng while	repair	ing in sl	hop.		
1:00	12:00	- 13:00	8	M/U cm	t std and	rack in	derrick													
3:00	13:00	- 16:00	8	R/U Fra	nks casi	ing equi	pment													
2:30	16:00	- 18:30	8	P/U csg	shoe tra	ack cons	isting of:	shoe jt, 2	its casing	& fit o	ollar jo	int. Ba	kerlock each o	connect	ion. Use	maxi	mum M	U torque.	Install	solid body
L	L			centraliz	zers.															
5:30	18:30	- 0:00	8	Continu	e runnin	g 346 m	m 131.2	kg/m P-11	0 TC-II ca	sing.	Total jt	s run =	58.							
	<u> </u>			L																
 	 		 																	
	 		 																	
 	<u> </u>		 	ļ																
	 			 																
	 		 																	
<u> </u>	 		 	-																
<u> </u>			┼					Rotating		-4 -4										
-	 		┼—	P.O. @	U5:00 1	o-June:	Continue	running c	asing. Tot	al jts n	un = 10) 0								
-	4.5.	Dates	NEC :]	atlas t	-d	20	- FO :-:-	(2 : 2				 			-				
	4 hr vmery:	- Nemev	s NBP. h	vehen ugg	aung ne	ac on I	Jo and n	ni 30 JOINE	s of 346 m	HTI CZS	ung									
<u> </u>		Finish 1	Punnin-	34F	nagia	od	nd													
	ected ations:	- misti	vurriing	346 mm (Lesing a	nu cem	714 38M€.													
		No see	lente	incid	No co"	ution -'	htina-	norted U-	خدام امل		2	h	tinge					Accidents:		
	ifety ives:								Hd daily pr			ry me	ru/193.					Safety Rep		NAR Lii Balaash
Daily Mu				Daily Tan					Took 50 : Deity Form						Daily D	iline C	ost			HL Balasch
Cum Mu		\$145	5,511	Cum Tan			\$2	1,322	Cum Form			<u> </u>	358,713.50		Cum Dr				\$	1,068,282
Chevron		\$2,00	4,910	1			\$1,	109,644				- \$	952,229.33						\$2	8,152,809
		66	3.7												Total A				\$7	9,476,760
Bulk Gel.	•	28	3	Cement,		318 9	Fuel,	4 36	Buk	WL	14	17.9	Rig Heave, m	0.3	Pitch,	0.3	Roll,	0.3		

300H234320060450 Well: Ches

Chevron et al Newburn H-23

EL 2359

Exploration

Robichaux / Curran / Bruton
Detx: 14-1-1-0

		anac	la Res	ourc						ron et	al. N	ewbu	rn H-	-23				Activity	Report	(metric)
Measured	Depth:		3,51	5 m	TVD		3,515		PBTD:				Propo	sed MD:		00 m	Propose	d TVD:	6,3	15 m
DOL:	26		DFS:	25		Spud	Date:	22	2-May-0	Daily	meter:	S:		0 m	Daily Rot Hrs:		0.0	HS Total Rot H		19.0
Torque: Nm		Drag: kdaN		Rot Wt: kdaN			P/U Weigh kdaN	t		S/O Wt: kdaN		•	Last B	OP Test:	02-Jun-	02		POB:	1	119
Last Casi	ng Size:		3 mm	Set At:			902 m	-	MD		1,902		TVÖ	Shoe Test, kg/n	,1	309	Leakoff?	Yes		7 No
Cum Rat	Hrs on Ca				Cum Rot		Casing Sir	ce Las	st Caliper		1,502		ock Se	K (Q:	· · · · · · · · ·	303		KOP:		$\overline{}$
Liner Size	:		11	9.0 Set At:				N	MD			L	TVD	Liner Top At:				MD		TVD
				Type:						Sample Fr	rom:		Wt,	<u> </u>	FV.	PV.		YP,	Gel,	
Mud Co: WL API,		HTHP:		FC(1/32)			based	- 10	Solids:		% Oil	Pits	kg/m²	1224 % Water:	s/qt 194 SWR	сР		Pa 14 MBT.	Pa pH:	17/22
cc/30min			7.2	mm			2.4			9.4			65.0		25.6		73 / 27	Kg/L 0.0		
Psm:	2.3	ES, voits		05	Carb:		Ct: 41,	000	Ca/Mg:		ASG:	4.	10	Solids % HG/L(3: #V/	LUE!	24hr Avş	SOC %:	No County	
Engr Sen	rice	2	Materia 24 hrs:	s added	ast		251 sx ba	ırite				_								741
Drig Gas:			Max Ga	is:			Conn. Gas	r.		Trip	Gas:			Trip Ct:		Rema	rks:			
Bit No.	IADC	Size		Manufact	urer	Se	erial Numbi	,	Туре	N		s, mm e No.	Size	TFA, mm³	MD in			MD Out	TVD	Out
			+			T		ヿ				0	6							
			1		-	 		\dashv			\vdash	Ť	Ť					-	1	
meters	Ho	ura.	WOB.	RPM	T 1:	Row	O-Row	_	DC	_	Loc	1	 B	G	Char			?Pull	Cost/r	meter
			kdaN		+			\dashv					_	-					+	
				-	\dashv			\dashv				-		-	 				+	
Total Len	gth of BH	A:		L	BH	A Desc	ription:					<u> </u>		<u> </u>	<u> </u>		L		<u> </u>	
	**					-											-			
Bit Cost	Row 1	0	Row 2		Rig	5	ann 1 1	rip	-	DC S	Size.		41	DP Size, mm:	400 Ho	ars On	455	0: 1		455
-3-				0	/hr		Tin	ne,hr		mm:	_					973:	155	Hrs Since La		
Bit	Lin	er, mm	Stro	ke, meter	s m	YSTK	SPM	Pres	ss, KPa	liter/min	Je	t Vel, m	/sec	DP AV, m/min	DC AV, m/m	n Bit	HHP	SHH-P/mm	Pum	np HHP
	<u> </u>	140		0.3556	0.	0159	ļ	<u> </u>			┞				 	-				
							ļ				<u></u>				<u> </u>	┼		l		
	Survey Mi	D	Ang	ile	Direct	tion		TVD		N	VS Coo	rdinate		EWC	oordinate	┼	Vertica	l Section, m	DLS	s, 730m
														ļ		╀				
																↓				
	· /P													<u> </u>						
Hrs.	hh:	n -To) mm	Code								Operation	ons Cov	ering 2	4 Hours Ending	at Midnight					
0:30	00:00			+	re-job s			·	- 00 74											
1:00 0:30		- 1:30 - 2:00		+			m casing for TDS n).								•		
11:00	2:00	- 13:0					m casing			94). M/U	Hange	er joint.								
1:30	13:00	- 14:3	0 8											casing equipm	nent. Screw in	TDS at	nd conve	ert auto-fill flo	at equipme	int.
3:30	14:30	- 18:0	0 8				6 mm cas													
1:00	18:00	- 19:0								100				down pumping					nger in SS	WH.
3:00 2:00	19:00	- 22:0 - 24:0												rtial returns @ pacer. Test ce				U minutes.		
2.00	22.00	- 24.0	-	1										el+10.0 L/tonne				ad-344L) @	560 kg/m³	!
 			1					_						14.0 L/tonne H						
	ļ			ļ																
<u> </u>	 		+-	-																
\vdash	 		-	+																
			\neg	1																
				Since	midnite	M & F	tail cem	ent. D	isplace	cement w	/ SBM	l. Did n	ot bur	np plug. Chk fl	oats. Set pac	coff and	test sa	me.		
				P.O. (9 06:00	16-Ju	ne: POOH	w/Al	BB-VG	PADPRT										
<u> </u>	<u> </u>	7=		Щ.	-															
	4 hr nmery:	Finisi	nunning	346 mm	casing.	Land	nanger in	SSWI	n. Circu	iate casir	g and	pegin	Cemer	nting operation	·					
-	jected	Finisi	n cementii	ng opera	tion: se	pack	off and tes	st sam	re. Test	BOPE										
	rations:	 		•	•	•														
	afety	No ac	cidents, n	o incide	at. No po	offution	n sightings	геро	rted. He	ld daily p	re-tou	r & safe	ty me	etings.				Accidents:	N.	AR
	tues:	Stand	by Vesse				Held well	contr	rol drill.						IA	Drilling (Cost	Safety Rep:	HL B	alasch
Daily M		\$	9,795		angible C			\$993	,395	Daily For				\$16,945.00					\$1,566,4	120
Cum Mu		\$1,	869,194	Cum Ta	engible C	ost		\$2,08°	1,717	Cum Fon	m EVM	COSC	. 1	610,460.83		Drilling (\$28,650,	947
Chevror			66.7	<u></u>							100			Die Wosse		Аррг:	IPo*		\$79,476,	760
Bulk Ge			28.3	Cemen m³	۲.	318			4,31	7.5 m³	k WŁ,	14	17.9	Rig Heave, m	0.3 de	0.3	Roll, deg	0.3		
Country	:		Ca	nada			Rig:	DW N	Aillenniu	m UW	t.	30		4320060450	Oritling Reps		Rol	oichaux / Cun	an / Brutor	1
Field:		Exp	loration			Los	50:		EL 235	9			Well	Chevi	ron et al Newl	um H-2	23	Date:	15-Jun-	02

		Canad	a Res	sourc						vron et	al. N	ewbu								y Re	port (metric)
Measured	Depth:			15 m	1	VD:	3,515	m F	PBTD				Propo	sed MD:		6,400) m	Propose	d TVD:		6,315 m
DOL:	27	C	FS:	26			Date:		2-May-0	2 Daily	meters	S :		0 m	Daily R	ot Hrs:			HS Total F	tot Hrs:	
Torque: Nm		Drag: kdaN		Rot Wt: kdeN			P/U Weigh kdaN	t		S/O Wt: kdaN			Last B	OP Test:	0	2-Jun-02	,		POB:	-	119
Last Casi	ng Size:		mm	Set At:	_		.502 m	A	MD		2 502	_	TVD	Shoe Test, kg/m	-	2-001-0		Leakoff?	0	/es	
Cum Rot	Hrs on C		111111		Cum F		Casing Sir	ce Las	st Calipe		3,502	Whips	ock Se	l K @:					KOP:		
Liner Size):			Set At					MD			<u> </u>	TVD	Liner Top At:					MD		TVD
				Type:					7	Sample Fr	om:		Wt.	L	FV.		PV.		YP,		Gel,
Mud Co:						Synthetic	-based					Pits	kg/m²	1236	s/qt	188	сР	26	Pa	14	Pa 17/22
WL API, cc/30min		HTHP:	7.2	FC(1/32 mm) API/I	HTHP:	2.4	١	Solids:	9.4	% Oii	:	65.0	% Water:	25.6	SWR:		73 / 27	MBT, Kg/L	0.00	pH:
Psm:	2.3	ES, volts	96	00	Carb:		CI: 41.	000	Ca/Mg:		ASG:	4.	20	Solids % HG/LG	3:	9.2/	0.2	24hr Avg	SOC %:	K	là Cultings ISSI 24 hr
Engr Sen		2		is added	last		337 sx Ba				73 sx			•							
			124 183.				337 SA DA	n d e			133	. yei									
Orlg Gas	:		Max Ga	is:			Conn. Gas	:		Trip (Sas:			Trip Cl:			Remark	ks:			
Bit No.	IADC	Size	+	Manufac		T .	erial Numbe		Туре	\neg		s, mm		TFA, mm²	I	MD In	Т		MD Out		TVD Out
51170.	100	346	┼	mai rui ac		- -		<u>"</u>	тура	No	. Size	No.	Size	177,7111		MO III			- Ou	-+	140 00
<u> </u>			+			_		-			<u> </u>	0	٥								
		Ц.,,	WOB.									┞	L.,	<u> </u>							
meters	Но	urs	kdaN	RPM		1-Row	O-Row		DC	<u> </u>	ос	'	3	G	<u> </u>	Char			?Pull		Cost/meter
				0								<u> </u>		<u> </u>							
	L													<u> </u>							
Total Len	igth of BH	(A:				SHA Desc	ription:														
Bit Cost	Row 1	0	Row 2	0		Rig\$ \$24 hr		rip ne,hr		DC S	ize,	2	1 1	DP Size, mm:	168	Hours		155	Hrs Since	Last In	spection: 155
Bit	Lin	er, mm	Stro	ke, mete	$\neg \neg$	m³/STK	SPM		s, KPa	liter/min	Je	t Vel, m	sec	DP AV, m/min	DC AV	/, m/min		ннр	SHHP	mm²	Pump HHP
		140	+-		十						┢				Г						<u> </u>
		140	+	0.3556	\dashv	0.0159	ļ				H				\vdash						<u> </u>
 	Survey MI	D	Ang	ile .	Die	rection		TVD		N	S Coo	rdinate		FAV Co	ordinate			Vertical	Section, r	•	DLS, °/30m
<u> </u>					_																563, 73611
		i																			1
<u> </u>																					
Hrs.	(Fron	n -To)	Tout	_			<u></u>						-day 2	A Marian Fasting of							<u> </u>
1:00		.mm	Code 9	Finish					24E					4 Hours Ending a splace w/ Hallil			dod 6	14 3			20 65 Mag
1.00	00.00	- 1.00	+	+										R100L+12.0 L						100 W	23.03 Mpa.
			+	 							-			d-344L) @ 189			, @	,			
				+			sure 10.2														
2:00	1:00	- 3:00	9	Switch	disp.	to rig pu	ımp & pur	np 189	9.7 m³.	Plug did n	ot bur	np. Pu	mp ad	ditional 1.5 m ³	(% of s	hoe trac	k) & s	hut dow	n. Chk fic	ats. Fk	oats held.
2:00		- 5:00	9	+			same to 3														
1:00		- 6:00	9	-			I. Stand b	ack c	ement s	tand.											
2:00		- 8:00 - 10:00	5 8	+		D running	casing bai	le & 1 /	/О сели	nt stand											
3:00		- 13:00	5								ing or	n WBR	RTan	d TIH to 998 m	 1.						
0:30		- 13:30	8	+			t wear bu														
2:30	13:30	- 16:00	5	POOF	l to H	WDP															
1:30		- 17:30	14			T and TI															
2:30		- 20:00	14	 						g/m³ mud	for 15	minut	es. Te	st BSR to 1.7 I	MPa an	d 37.2 N	Apa.				
0:30 3:30	 	- 20:30 - 0:00	14	+			OP ITT in			7 MDa la	w / 27	0 14-	hink	on Rams, Anni	ulare ~	hk and l	rift væk		ka masif	dd co	ellow oca
3.30	20.30	- 0.00	+"	, est b	OFE	a	J.13UPB	shace		mra 10	æ / 3/	.s Mpa	- mgm	or rains, Arini	Jig13, C		TEIV	Je, G10	- CHANGE	UII Y	enver pout.
	 		1-	t																	
				P.O. (3 06:0	00 17-Jui	ne: POOH	w/ BC	OP ITT												
	4 hr nmary:	Finish	cementin	ng casin	g. Set	wear bu	shing. Te	st BOF	≥ €												
			Tast'			04:0:	A 7111	4 4 20		200					·						
	jected rations:	rinish	esungs	unace i	OPE	. P/U BH	M, IIH an	a auti	out 13-3	3/8" casing	<u>. </u>		-								
8	afety	No acc	idents. ne	o incide:	nt. No	pollution	sightinos	repor	ted. He	ld daily pn	e-tour	& safe	ty me	etings.	-				Accidents	:	NAR
	LOS:					 								and Abandon	ship di	riffs.			Safety Re	pr.	HL Balasch
Oaily M.	d Cost		0,910	Daily To				\$993.		Daily Forn				16,945.00		Daily D	illing C	ost		\$	1,565,256
Cum Mu	d Cost:		42,723	Cum Ta	ngible	Cost:		3,163		Cum Form	Eval (Cost		,048,615.99		Cum Dr	M ng C	oet:			33,015,906
Chevron	%:		6.7	1			······		,				<u>~</u>			Total A	opr:				79,476,760
Bulk Ge			4.9	Cemen	ι.	222	Fue	ς.	4 000	Bulk	Wt.		0.2	Rig Heeve, m	0.5	Pitch, deg	0.5	Roll.	0.5		
Country	:			lw,		233.	Rig:	DW **	4,280	UWI:			9.2 0H23	1320060450	Drilling		U.3		ichaux / (,,,,,,,,	Bodos
Field:		Evalu	ration	nada		Lees			EL 235			30	Welt:		20 64 54	Newbui	n H-21		Oete:		6-Jun-02
		- wit							233					34,040				·	I		

	ron C	anada	a Res	ourc					vron et	al. Ne	wbu	rn H-	23	_	D		ı Activi	ty Re	port
Measured	Depth:		3,51	15 m	TV):	3,515	PBTD:				Propos	sed MD:		6,400 n	Prop	sed TVD:		6,3
DOL:	28	DI	FS:			Spud	Date:		Daily	y meters	:		0	Daily Ro			HS Total	Rot Hrs:	
Torque:		Drag:		27 Rot Wt:		4	P/U Weigh	22-May-0	S/O WI:			Last B	0 m OP Test:	L		0.0	POB:		
Vm .		kdaN		kdaN			kdaN	·•	kdaN					17-	-Jun-02				1
ast Casir	ng Size:	346	mm	Set At:		3	,502 m	MD		3,502	m	TVD	Shoe Test, kg/m	1 ³ :		Leak	×#7 🔲	Yes	[
Cum Rot I	Hrs on Ca			\neg	Cum Rot			nce Last Calipe	ır:		Whipst	ock Se	(Q :			—	KOP:		
iner Size				Set At:	L			MD				TVD	Liner Top At:				MD		
Litter Size				361 AL				MU				170	Liner (op Ac				MU		
Mud Co:	•••			Type:					Sample F	rom:		Wt,		FV.	P\	<u>'</u> .	YP.		Get,
WL API,		ITHP:	-	ECION	Syr API/HTF		-based	Solids:	<u> </u>	% Oit:	Pits	kg/m²	1224 % Water:	s/qt	189 CP SWR:	26	MBT,	14	Pa pH:
cc/30min	ľ		7.2	mm	, ~~ 01111	w.	2.4	Jonas.	9.4	170		65.0	A Water.	25.6	3***N.	73/	27 Kg/L	0.00	ľ
Psm:		S, volts			Carb:		Ct:	Ca/Mg:		ASG:			Solids % HG/LG			24hr	Avg SOC %:	N	o Cutting
Engr Serv	2.3			05 is added	last		41,	,000		ــــــــــــــــــــــــــــــــــــــ	•.	10	L		8.9 / 0.	0 1			h
		2	24 hrs:																
Drig Gas:	:		Max Ga	is:			Conn. Gar	3 :	Trip	Gas:			Trip CI:		Re	marks:			
			┾				L			Jets	, mm								
Bit No.	IADC	Size	L	Manufac	turer	S	erial Numb	er Typ	• N	lo. Size		Size	TFA, mm ³	1	MD In	l	MD Out		TVD
4	M422	311		Hycalo	~	П	200600	DS 1	63 1	14	5	13	794	1	,515 m				
	M-222	311		пусак		╁─	200000	 33 	"	+	j	۳			,313111			\dashv	
			1		r	<u> </u>										-		-	
meters	Hou	rs	WOB, kdaN	RPM	1 1	Row	O-Row	DC	:	Loc		В	G	l	Char		?Pull	- 1	Cost/r
_				Η.															
-	 	-+		- 0			 -		-		-		ļ	 				+	
	L			<u> </u>			<u> </u>				L		L	<u> </u>					
Total Lan	igth of BHA	\	289.	.91 m	BH	A Desc	ription:	PDC B	it. Bias u	nit, Ext	Sub. C	ontrol	Collar, Non-M	eq X/O.	Stabilizer	r, Non-M	ng Flex colla	ar, Float	sub.
ADC M	· ·				0.01-1:11		!- ٧.												
							onic, X/O,	3 - 210 mm I	JC, X/O,	3 - 108	mm H	WUP,	Jars, 20 - 168	mm HVV	DP (BR 8	o sensor	APWU 15.	26m,	
	89m, GR	15.97m,	_														· · · · · · · · · · · · · · · · · · ·		
Bit Cost S	Row 1	. 0	Row 2	0	Rig	S \$24		ľrip ne,hr	mm	Size,	24	41	DP Size, mm:	168	Hours C Jars:	yu a	Hrs Sinc	e Last In:	spection:
Bit	Line	r, mm		ke, mete		YSTK	SPM	Press, KPa	liter/min		Vel, m	leec	DP AV, m/min	DC AV		Bit HHP	-	Pinan ²	Pun
		*, ((#))	300	NO. 111010	ns m	7311	SEM	Pless, NPa	MODEL/17MIT		V 60, 110	300.	Dr Av, Hellar	1	-	DA INW	Brief	711111	
4	1	40		0.3556	0.	0159		<u> </u>	L						i_				<u> </u>
	Survey MD		Ang		Direc	tion.	 	TVD		VS Coor	dinate		EM Co	ordinate	_	Ver	ical Section,		DLS
-	ouvey mo		~~~		Direc	lion	 	140	 '	15 000			2	Ordinate					100
							<u> </u>		<u> </u>										
					 		 		 				 						†
	(From	-10)			<u> </u>		<u> </u>		ь				L						<u> </u>
Hrs.	hhin		Code							Operatio	ns Cov	ering 2	4 Hours Ending a	at Midnigh	1 t				
2:00	00:00	- 2:00	14	Contin	ue to pr	essure	test BOP	E to CT and	CNSOPB	specs.	Test 1	1725 k	Pa low / 38000	kPa hig	h on all r	ams, an	nulars, chok	e and ki	II failsal
	L			valves	, and ch	oke m	anifold. Al	l tests 5 minu	tes with r	no bleed	off. A	ul pres	sure test funct	ions per	formed o	n yellow	pod. Function	on test E	OP's fr
			1	bridge	on blue	pod. l	aid down	one stand 24	11mm dril	collars	and p	oicked	up 10 stands 1	68mm,	41.2 kg/n	n drill piç	e while pres	sure tes	sting BC
3:30	2:00	- 5:30	14	Releas	se BOP	solation	on Test To	ol. Pump slu	g & POOI	Н.									
3:30	5:30	9:00	14	Pressi	ure test	Top Dr	ive IBOP	s. kelly hose	& standpi	pe to 1	725 kP	a low	/ 38000 kPa hi	oh for 5	mins eac	h test.			
7:00	9:00	- 16:00	07										rior to RIH. Ma				anned out d	rilling ia	A (27
	0.00		+	+	<u> </u>													g ,	-, -
2.20	10.00	40.00	+										ent 11650 kPa						
2:30	16:00	- 18:30	05	+				mai 12 joints	ioomm, 4	+1.2 kg	m and	pipe.	Held trip drill, v	well 50CL	are IN 58	3800000\$			
3:00	18:30		21		cut 25m														
2:30	21:30	- 0:00	05	Contin	ue RIH	from 9	01m to 17	'11m.											
L	<u> </u>																		
			1	T															_
	 	•	\top	T															
 -			+-	\vdash															
 	 			+-															
				1															
			ļ	T															
				P.O. (@ 05:00	18-Ju	ine: Tagge	ed cement at	3447m (1	7 m hig	h). Ta	king sl	low circulating	rate pre	ssures ar	nd choke	line friction		
				+			ine: Tagge nm shoe ti		3447m (1	7 m hig	h). Ta	king sl	low circulating	rate pre	ssures ar	nd choke	line friction		
	4 hr	Finish p	ressure	prior to	o drilling	346 n	nm shoe ti							rate pre	ssures ar	nd choke	line friction		
	4 hr mmery:	Finish p	ressure	prior to	o drilling	346 n	nm shoe ti	rack						rate pre	ssures ar	nd choke	line friction		
Surr	nmary:			prior to testing	o drilling BOPE &	346 n	nm shoe to	rack . Make up & l	RIH 311m	em bit o	n rotar	y stee	rable BHA.				line friction		
Surr				prior to testing	o drilling BOPE &	346 n	nm shoe to	rack . Make up & l	RIH 311m	em bit o	n rotar	y stee					line friction		
Surr Proj Oper	nmery: ojected rations:	Continu	e RIH. C	prior to testing	o drilling BOPE &	POOI	nm shoe to H test tool drill 2m n	rack . Make up & l ew formation	RIH 311m	em bit o	n rotar Irill ah	y stee ead 31	rable BHA.						
Pro Oper	nmary: njected rations:	Continu No acci	e RIH. D	prior to testing Driffout 3 o incide	o drilling BOPE & B46mm s	346 n POOI	nm shoe to H test tool drill 2m n	rack . Make up & I ew formation ps reported. H	RIH 311m Perform	FIT & c	n rotar Irill ahd r & saf	y stee ead 31 fety me	rable BHA. 1mm hole with	rotary s			Accident	s:	N
Surr Proj Oper Si Iss	nmery: njected rations: afety sues:	Continu No acci	e RIH. D	prior to testing Oriflout 3 o incide is the n	BOPE & BA6mm s	346 n POOI shoe & pollution Se	nm shoe to H test tool drill 2m n	rack . Make up & I ew formation ps reported. H	Perform leid daily , took 58	FIT & c	n rotar Irill ah r & sal s. Fun	y stee ead 31 fety me	rable BHA.	rotary s	steerable	BHA.		s:	N/ HL Ba
Pro Oper Si les Daily Mu	nimery: njected rations: afety sues: ud Cost:	Continu No acci Standby	e RIH. D	prior to testing Drillout 3 o incide is the n	o drilling BOPE & 346mm s ints. No inty Hebri angible C	346 n POOI hoe & pollution on Secost:	nm shoe to H test tool drill 2m n	rack . Make up & I ew formation ps reported. H	Perform leid daily , took 58	FIT & c	n rotar drill ahd r & saf s. Fun Cost:	ead 31	rable BHA. 1mm hole with	rotary s	steerable Daily Drift	BHA.	Accident	s:	
Surr Proj Oper Si Iss	nimery: njected rations: afety sues: ud Cost:	Continu No acci	e RiH. C dents, n y Vessel	prior to testing Drillout 3 o incide is the n	BOPE & BA6mm s	346 n POOI hoe & pollution on Secost:	nm shoe to H test tool drill 2m n on sighting a. Held we	mack . Make up & I ew formation gs reported. Healt control drift \$50,300	Perform leid daily , took 58	FIT & c	n rotar drill ahd r & saf s. Fun Cost:	y stee ead 31 fety mo	rable BHA. Imm hole with setings. loor & crown si	rotary s	steerable	BHA.	Accident	et:	HL B: \$753,39
Pro Oper Si les Daily Mu	operations: afety sues: ud Cost:	Continu No acci Standby \$8.	e RiH. C dents, n y Vessel ,025 50,748	prior to testing Drillout 3 o incide is the n	o drilling BOPE & 346mm s ints. No inty Hebri angible C	346 n POOI hoe & pollution on Secost:	nm shoe to H test tool drill 2m n on sighting a. Held we	rack . Make up & i ew formation gs reported. Heli control drift	Perform leid daily , took 58	FIT & c	n rotar drill ahd r & saf s. Fun Cost:	y stee ead 31 fety mo	rable BHA. I mm hole with settings.	rotary s	steerable Daily Drift	BHA. ing Cost	Accident	E:	HL Ba \$753,39 32,796,9
Proj Oper Si les Deily Mu Cum Mu Chevron	nimery: njected rations: afety sues: ud Cost: ud Cost:	Continu No acci Standby \$8.	e RiH. C dents, n y Vessel	prior to testing : Oriflout 3 o incide is the n Daily T	o drilling BOPE & 346mm s ints. No inv Hebr angible C	346 n POOI hoe & pollution on Secost:	nm shoe ti H test tool drill 2m n on sighting a. Held we	rack Make up & i ew formation s reported. Hell control drift \$50,300 \$2,241,026	Perform Perform leld daily , took 58 Daily For	FIT & c pre-tou second m Eval (n rotar drill ahd r & saf s. Fun Cost:	y stee ead 31 fety mo	rable BHA. Timm hole with setings. Iloor & crown si 861,403.28	rotary s	Daily Driff Cum Driff Total App	BHA. ing Cost	Accident Safety R	E:	HL B: \$753,39
Proj Oper Si les Daily Mu Curn Mu	nimery: njected rations: afety sues: ud Cost: ud Cost:	Continu No acci Standby \$8,	e RiH. C dents, n y Vessel ,025 50,748	prior to testing Drillout 3 o incide is the n	o drilling BOPE & 346mm s ints. No inv Hebr angible C	346 n POOI hoe & pollution on Secost:	nm shoe ti H test tool drill 2m n on sighting a. Held we	rack Make up & i ew formation ps reported. Hell control drill \$50,300 \$2,241,026	Perform Leid daily , took 58 Daily For	FIT & c	n rotar drill ahe r & saf s. Fun Cost:	y stee ead 31 fety mo	rable BHA. Imm hole with setings. loor & crown si	a rotary s	Daily Driff Cum Driff Total App	BHA. ing Cost	Accident Safety R	E:	HL Ba \$753,39 32,796,9
Proj Oper Si les Deily Mu Cum Mu Chevron	nmary: pjected rations: afety sues: ud Cost: ad Cost:	Continu No acci Standby \$8,	e RIH. C dents, n y Vessel .025 50,748 6.7	prior to testing : Driffout 3 o incide is the n Daily T Cum Ti Cemen m³	o drilling BOPE & 346mm s ints. No inv Hebr angible C	346 n POO! thoe & pollution on Secost:	nm shoe ti H test tool drill 2m n on sighting a. Held we	rack Make up & I we formation us reported. Hell control drill \$50,300 \$2,241,026	Perform Perfor	pre-tou second m Evel (r & saf s. Fun Cost:	y stee ead 31 fety mo ction f	rable BHA. Imm hole with setings. loor & crown si 61,403.28 1,110,019.27 Rig Heave, m	a rotary s	Daily Driff Cum Driff Total App	BHA. ing Cost: r: Roll 0.3 deg	Accident Safety R	5: \$2:	HL Ba \$753,39 \$2,796,9 79,476,1
Proj Open Si Iss Deily Mu Cum Mu Chevron Bulk Gel m ³	nmary: pjected rations: afety sues: ud Cost: ad Cost:	Continu No acci Standby \$8,	e RIH. [dents, n y Vessel .025 50,748 6.7	prior to testing : Oriflout 3 O incide is the n Daily T	o drilling BOPE & 346mm s ints. No inv Hebr angible C	346 n POO! thoe & pollution on Secost:	nm shoe to H test tool drill 2m n on sighting a. Held we	rack Make up & i ew formation ps reported. Hell control drill \$50,300 \$2,241,026	Perform Perfor	pre-tou second m Evel (r & saf s. Fun Cost:	y stee ead 31 fety mo ction f	rable BHA. Imm hole with setings. loor & crown si 861,403.28 1,110,019.27 Rig Heave, m	a rotary s avers. 0.4 Drilling	Daily Driff Cum Driff Total App	BHA. ing Cost r: Rott	Accident Safety R	s: sp: \$3 \$7	HL Ba \$753,39 \$2,796,9 79,476,1

Canada

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

Robichaux / Curran / Bruton Date:

Chev	ron Ca	nada	a Res	ources			Chev	ron et a	al. Ne	wburn H	-23	1	Orilling .	Activity Re	eport (metric)
Measured	Depth:		4,04	2 m	TVD:	4,042 1	PBTD:			Propo	sed MD:	6,400	Propose	d TVD:	6,315 m
DOL:	30	O.	FS:	29	Sp	oud Date:	22-May-02	Daily	meters:		422 m	Daily Rot Hrs:	21.5	HS Total Rot Hrs:	30.5
Torque: Nm	0)rag: daN	4.9	Rot Wt:	285	P/U Weight		S/O Wt:	28		3OP Test:	17-Jun-02		POB:	122
Last Casi		346		Set At:	200	3,502 m	MD		3,502 m	17/0	Shoe Test, kg/n		Leakoff	Yes	☑ No
Cum Rat	Hrs on Casi		37.	Cum	Rot Hrs		ce Last Caliper			Whipstock S	et @:	102	<u> </u>	KOP:	
Liner Size):			Set At:			MD			TVD	Liner Top At			MD	TVD
Mud Co:				Туре:				Sample Fro		Wt.		FV.	v.	YP.	Gel,
WL API,		THP:		FC(mm) API		tic-based	Solids:		% Oil:	Pits ke/m²	1261 % Water:	s/qt 181 c	P 23	Pe 16 MBT,	Pa 17/22 pH:
cc/30min Psm:		S. volts	7.2	mm Carb		2.4 Ct	Ca/Mg:	10.7	ASG:	65.0	Solids % HG/L0	24.3	74 / 26	g SOC %:	<u> </u>
:	2.5	5, VOII3	11:	20 added last		41,	000			4.20		10.1 /	0.3		3.80
Engr Sen	vice .	2	24 hrs:			263.1 cut	oic meters liqu	id mud	991 sx	barite		4 drum Novam	ul	2 drum EMI-15	<u>, </u>
	Cleanup					-		- I=:			IT Ch		Remarks:		
Drig Gas	: 	60	Max Ga	s:	130	Conn. Gas	164	Trip (0_	Trip CI:	<u> </u>	Cernal xs.	Connection 164	/ Background 108
Bit No.	MDC	Size	'	Manufacturer		Serial Number	т Туре	No.		mm No. Size	TFA, mm³	MD In		MD Out	TVD Out
4	M422	311		Hycalog		200600	DS 16	53 1	14	5 13	794	3,515 m			
meters	Hour	3	WOB. kdaN	RPM	I-Rov	v O-Row	DC	۱	.oc	В	G	Char		?Pull	Cost/meter
527	30.5	,	6.2	150			1	$\neg \vdash$							\$2,233.40
	30.5							\neg							
Total Lar	ngth of BHA		289.	91 m	BHA D	escription:	PDC B	t. Bias un	it. Ext S	Sub. Contro	ol Collar, Non-M	Aag X/O, Stabiliz	er, Non-Mag	Flex coltar, Floa	it sub,
ARC 9	00 Power	oulse M			abilizer.	Isonic, X/O.						mm HWDP (Bi			
				52m, Sonic											
Bit Cost	David	109,000	1 Day 2	0	10: 4	\$24,000	rip 14.0	DC S	i28.	241	DP Size, mm:	168 Hours		Hrs Since Last I	nspection: 170.5
Bit	Liner	. mm	Stro	ke, meters	m³/S1		Press, KPa	liter/min	Jet	Vel, m/sec	DP AV, m/min	DC AV, m/min	Bit HHP	SHHP/mm²	Pump HHP
1	14		+	.3556	0.01	 	24476	4188	1	87.7	78.00	138.00	505	2762.53	2291
H	<u> </u>	+0	 	1.3330	0.01.	33 204	244/0	4100	1	<u> </u>	70.00	100,00			
	Survey MD		Ang	le I	Direction	_	TVD	N	/S Coord	dinate	E/W C	Coordinate	Vertic	al Section, m	DLS, 9/30m
_							42.69 m		-4.83	3		1.40		6.43 m	0.06
	3,942.74 m	$\neg \tau$	0.1 0.1		265.1 237.1		70.68 m	 	-4.84		1	1.35	-	-6.40 m	0.06
	3,970.73 m 3,999.94 m		0.1		311.4		99.89 m	-	-4.84			1.30		6.36 m	0.14
Hrs.	(From	·To)	Code	i i					Operation	ns Covering	24 Hours Ending	at Midnight			
12:00	00:00 -		02	Drill from	3620m	- 3860m (Av	g ROP=20.0	n/hr). Sur	vey and	d back rear	n each connect	tion.			
2:30	12:00 -	14:30	01				from 1235 kg/								
9:30	14:30 -	0:00	02	Drill from	3860m	- 4042m (Av	g ROP=19.1	m/hr). Sur	vey and	d back rear	n each connec	tion.			
<u> </u>	-		-	 											
-	 			 											
<u> </u>	ļ		-	<u> </u>											
	 			<u> </u>											
 	+														
	1		\top												
_	+		-	ļ											
-	 		+	 											
1	+														
	1		\top	P.O. @ 0	5:00 20	-June: Ran v	wiper trip at 4	052m to 3	46mm	shoe. Circu	ılate out trip ga	s & increase mu	d weight to	1310 kg/m³ prior	to drilling ahead.
	24 hr immery:	Drilled	311mm	hole from 3	520 - 40	342m. Increa	sed mud weig	ht from 1	235 kg/	m³ to 1260	kg/m³ @ 3860)m.			
<u> </u>		D-21 -	11	le to 4050	C:	nto hais -t	- لدة - محشير في م	to 246	o casis.	n shoe Cin	culate out tric o	as & incresse ~	ud weinht to	1310 kg/m³ nriv	or to drilling ahea
	ojected erations:	Orni 31	i imm no	₩ ÷VJ∠M	. Circui	are inne cies	or webeararib	w s-tomin	. 40341	g 3110 0 . UII		, u	Jugan W	pm	
	Safety	No ac	cidents, i	no incidents	. No po	llution sightin	ngs reported.	Held daily	pre-to:	er & safety	meetings.			Accidents:	NAR
·	ssues:	Stand	by Vesse				it drill, took 7				crown savers.	- 42.7		Safety Rep:	HL Balasch
	lud Cost	\$3	17,459	Daily Tang			\$2,425	Daily For			\$23,595.00		rilling Cost		\$925,569
	lud Cost:	\$2,:	376,446	Cum Tang	ble Cost		\$2,283,376	Cum For	m Eval (Coet	\$1,157,209.27		rilling Cost:		\$34,482,237
Chevro	on %:		66.7									Total A			\$79,476,760
<u> </u>															
Bulk G m³	el.		24.9	Cement, m ³	:	230.1 m ²	el, 3 4,17	1.8 m³	k Wt,	114.7	Rig Heave, m	0.3 deg	Roll, 0.3 deg	0.3	
Bulk G m³ Countr		;						1.8 m³			34320060450		0.3 deg	0.3 obichaux / Curra Date:	n / Bruton

Exploration

Canada

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

Robichaux / Curran / Bruton

hev	ron (Canad	a Res	ource	s		Chev	ron et	al. Ne	wburn l	H-23				Report (metric)
easured	Depth:		4,36	16 m	TVD:	4,366 n	PBTO: n			Proj	posed MD:	6,400	Propor) m	sed TVD:	6,315 m
OL:	32	C	FS:	31	Spuc	Date:	22-May-0	2 Daily	meters:		57 m	Daily Rot Hrs:	4.5	HS Total Rot He	's: 51.0
orque:		Drag:		Rot Wt:	202	P/U Weight		S/O Wt:	30		BOP Test:	17 lun 0'	,	POB:	116
m ast Casir	13558 ng Size:	kdaN		kdaN Set At:		kdaN	305 MD			TVE	Shoe Test, kg/n	17-Jun-02	Leeko	ff7 ☐ Yes	
	Hrs on C		mm	Ic		,502 m	ce Last Caliper		3,502 n	n Whipstock	_t	162	21	KOP:	
		aury.	53	3.0		· Casing Oil		5	7.5					MD	TVD
ner Size	r:			Set At:			MD				Liner Top At:	-			
ud Co:	MLI			Туре:	Synthetic	-hased		Sample Fro		Pits Wt.			PV. cP 23	YP. Ps 23	Gel, Pa 20/24
L API,		HTHP:		FC(mm) A			Solids:		% Oil:		% Water:	SWR:		MBT,	pH:
:/30min sm:		ES, volts	7.2	mm IC:	erb:	2.4 Cl:	Ca/Mg:	16.7	ASG:	61	.0 Solids % HG/L0	22.3 3:		16 Kg/L 0.00 Ng SOC %:	, ,
3 1 4 1	2.3	E3, VOIS		64		40,0	000		100	4.10		15.7	0.7		5.07
ngr Serv	NCB	2	Materia 24 hrs:	is added la	S4	2322 sx b	arite		80 sx	Calcium (Chloride				
rig Gas:		0.98	Max G	is:	13.00	Conn. Gas		Trip (Gas:		Trip Ct:		Remarks:		
Bit No.	IADC	Size		Manufactu		erial Numbe	г Туре	,		, mm	TFA, mm²	MD In		MD Out	TVD Qut
					-				1		- 	 			
4	M422	311	—	Hycalog		200600	RS 10	63 1	14	5 1:	3 794	3,515 m			
		<u> </u>	1000						Щ			ļ			
meters	Ho	xurs	WOB, kdaN	RPM	I-Row	O-Row	DC	'	Loc	В	G	Char		?Pull	Cost/meter
851	51	.00	6.2	150	1										\$1,961.22
	<u> </u>			T		1		\neg							
otal Len	gth of Bi	HA:		<u>. </u>	BHA Des	cription:		<u> </u>		Cb. O= :	ani Callas Nes A	V/O O		o Slev colles C	at aut
				.91 m										g Flex collar, Fk	JOL SUU,
ARC 90	00, Pow	erpulse M	IWD, 308	mm ILS	Stabilizer, Is	ionic, X/O,	3 - 210 mm [OC, X/O, 3	3 - 168	mm HWD	P, Jars, 20 - 168	mm HWDP (B	it to sensor:	APWD 15.28m,	
					ic 33.17m)		-	100.0	Size		Ing e:	I Herra	- 00	-r	
Bit Cost \$	ROW 1	109,00	0 Row 2	0	Rig\$ \$2		rip 14.0 ne,hr	DC S		241	DP Size, mm:	168 Hour Ja		5 Hrs Since Last	Inspection: 186.5
Bit	Lir	ner, mm	Stro	ke, meters			Press, KPa	liter/min	Jet	Vel, m/sec	DP AV, m/min	DC AV, m/min	Bit HHP	8HHP/mm ²	Pump HHP
		140	1	0.3666	0.0150	262	27303	4156	\dagger	87.0	77.00	137.00	568	3111.68	2537
4	 	140	+	0.3556	0.0159	202	2/303	4130	+	07.0	17.00	137.00	- 300	0.11.90	2001
			٠.	. Т		 			<u> </u>	-d'd-			Yes	ical Section, m	212 572
	Survey M	ID	An	gle	Direction		TVD	N	VS Coon	dinate	EWC	oordinate	Vert	cai Section, m	DLS, 9/30m
						<u> </u>									
								1							
						T									
Hrs.		m -To)	Code	T					Operation	ns Coverin	g 24 Hours Ending	at Midnight	<u> </u>		
4:30	00:00	- 4:30		Drill f/ 4	309m - 436	6m (avo RO	DP=12.7 m/h	r). Survey	and ba	ack ream	before each con	nection.			······································
4:00	 						1308 kg/m² to								
4:30	8:30						1368 kg/m³ to								
2:00	13:00						1404 kg/m³ to								
2:00	15:00			+			culate btms u								
2:30	17:00						1428 kg/m³ to		/m³						
2:30	19:30	- 22:0	0 01				culate btms u								
2:00	22:00	- 24:0	0 01	Circula	te and incre	ase MW f/	1452 kg/m³ to	1476 kg	/m³						
				1											
															-
	1														
	↓														
	_														
	<u> </u>			_							n. Circ Btms up.	Flow chk. Mak	e 3 std short	t trip.	
	4			P.O. @	05:00 22-J	une: Circu	lating btms u	p after she	ort trip.						
		1.								4.476					····
	24 hr mmary:	Drill 6	4309m -	4366 m (avg ROP=1	2.7 m/hr). (Circulate and	ıncrease	MW to	1476 kg/d	cubic meter.				· · · · · · · · · · · · · · · · · · ·
		-													
	ojected erations:	Conti	nue Drilli:	ng and su	rveying acco	ording to di	rectional plan	<u>. </u>							·····
<u> </u>								11-1-2-7-7-						Accidents:	
	Safety						gs reported.							Safety Rep:	NAR
	sues:		by Vess			ea. Held p	t drill, took 60	Daily For			crown savers.	Chair-	Orilling Cost:	Caracia Mark	AJ Gilbert
	lud Cost:	\$:	27,953		ngible Cost:		\$2,425	1			\$23,595.00				\$678,813
	ud Cost:	\$2.	474,654	Cum Ta	ngible Cost:		\$2,288,226	Cum For	m Eval (Cost:	\$1,204,399.27		Orifling Cost:		\$35,852,321
Chevro	n %:		66.7									Total /	Appr:		\$79,476,760
Bulk G	el,			Cement		Fu			k Wt.	400	Rig Heeve, m			A 2	
m³ Country	V:		24.9	m³	87	7.1 m ³ Rig:		UW	/l:	123.6		0.2 deg Drilling Reps:	0.2 deg	0.3	
			C.	anada			DW Millenni	um			234320060450 ell:			Robichaux / Curr Date:	
Field:		Exp	loration			866:	EL 23	59			Chev	ron et al Newbi	ım H-23		21-Jun-02

		anad	a Res	ource					vron et	al. No							Activity	Repor	t (metric)
Measured	Depth:		4,41	8 m	TVD:		4,418 m	PBTO:				Propos	sed MD:	6,40	00 m	Proposed	TVD:	6,	,315 m
DOL:	33	C	FS:	32	1	Spud	Date:	22-May-0	2 Daily	meters	i:		52 m	Daily Rot Hrs:		5.5	HS Total Rot	Hrs:	56.5
Torque: Nm		Drag: kdaN		Rot Wt: kdaN	30		P/U Weight:		S/O Wt:	3	00	Last B	OP Test:	17-Jun-0	22		POB:		116
Last Casi				Set At:	30.		kdaN	MD				TVD	Shoe Test, kg/m	3.	TI.	Leakoff?	Yes		IJNo
Cum Rot	Hrs on Ca		mm	. [0	um Rot H		502 m Casing Sind	e Last Calipe	r.	3,502	m Whipst	ock Se	l (3 :	16	21		KOP:		
Liner Size	Ε.	-	63	Set At:				MD	- 6	3.0	<u> </u>	TVD	Liner Top At:			!	MD		,110 m TVD
				Туре:					Sample Fr	om:	-	Wt.		FV.	IPV.		YP.	Gel,	
Mud Co:							based				Pits	kg/m²	1453	s/qt 156	сР	25	Pa	21 Pa	20/24
WL API, cc/30min		ITHP:		FC(mm) / mm	API/HTHP	:	2.4	Solids:	20.0	% Oil:		59.0	% Water:	21.0 SWR:		74 / 26	MBT. Kg/L ()	.00 pH:	
Psm:	3.1	S, volts	86	60 C	arb:		Ct: 42,0	Ca/Mg:		ASG:	4.0	0	Solids % HG/LG	16.5	/ 1.9	24hr Avg	SOC %:	4	1.25
Engr Sen	rice	2	Material 24 hrs:	is added la	est		106.8 tonn			141	m³ bas			120 sx Lime					
			1271113.				100.0 1011	e varite		17.1	003	0.011		TEO SA CHING					
Drig Gas		1.09	Max Ga	15:	12.	61	Conn. Gas:		Trip (Gas:	12.	61	Trip Cl:		Remark	ks:			
Bit No.	IADC	Size	+	Manufactu			rial Number	Тур	. —		s, mm		TFA, mm²	MD in	'—		MD Out	īv	D Out
			+		-			-	- ```). Size	T			ļ	\dashv				
4	M422	311	┼	Hycalog			200600	RS 1	63 1	14	5	13	794	3,515 n	<u> </u>				
		· · · · · · · · · · · · · · · · · · ·	WOB.	T	لـــــ	_		_		L	H								
meters	Hou	rs	kdaN	RPM	I-R	ow	O-Row	DC	_ _'	.ос			G	Char			?Pull	Cos	t/meter
903	56.5	50	6.2	150	\perp								ļ					\$1,9	94.46
<u> </u>				<u> </u>				L					<u>L</u>	!					
otal Ler	igth of BHJ	· .	289.	.91 m	BHA	Uescr	ription:	PDC B	it, Bias un	it, Ext	Sub, C	ontrol	Collar, Non-M	ag X/O, Stabil	izer, No	n-Mag	Flex collar,	Float sub,	
ARC 9	0, Powe	rpulse M	WD, 308	mm ILS	Stabilize	r, Iso	nic, X/O, 3	3 - 210 mm (OC, X/O, 3	- 168	mm H	WDP,	Jars, 20 - 168	mm HWDP (E	Bit to se	nsor: Al	PWD 15.28	m,	
	89m, GR	15.97m			nic 33.17	m)													
Bit Cost \$	Row 1	109,000	Row 2	0	Rig\$	\$24.	,000 Time		DC S	ize.	24	11	DP Size, mm:		rs On ars:	41.5	Hrs Since L	ast Inspectio	n: 196.5
Bit	Line	r, mm	Stro	ke, meter:	m³/5	STK	SPM	Press, KPa	liter/min	Je	t Vel, m	sec	DP AV, m/min	DC AV, m/mir	Bit	ннР	ВННР/п	n² Pi	ump HHP
4	1	40		0.3556	0.0	159	234	24821	3712		77.7		69.00	122.00	4	05	2216.8	6	2059
			1			-										-			
	Survey MD		Ang	jie	Directio	×	1	VD.	N.	S Coo	rdinate		E/W Co	ordinate	İ	Vertical	Section, m	ы	LS, °/30m
	,313.09 n	.	5.9		306.6		A 31	2.56 m		3.4	e			.83	1		93 m		0.45
	,343.63 п		6.4		309	_		2.92 m		5.5				.44	1		22 m		0.55
	,371.21 п		7.3		312.8			0.30 m	<u> </u>	7.6				.94	\vdash		2.49 m		1.07
Hrs.	(From	-To)	Code	<u>~ 1</u>	312.0		4,57	0.30 111				ning 2	4 Hours Ending a			<u></u>			
0:30	00:00		01 T	continu	e to Circ	ulate	and increa	ase MW to 1					kill lines. Simul		n. No fic	ow			
3:00	0:30	3:30	01 T	Circula	te botton	ns up	,												
1:00	3:30	- 4:30	05 T	Make s	hort trip.	POC	OH w/ 3 std	is. Hole not t	aking pro	per fill.	TIH. N	o fill c	on bottom.						
1:30	4:30		01 T	Circula	te botton	1s up													
1:00	6:00	7:00	01 T	+									SSWH. No flow	1.					
1:00	7:00 9:30		01 T					1500 kg/m³. essure and o											
0:30	10:30	- 11:00		+		_		down link se											
1:00	11:00	- 12:00		+				6 m - 4376 r											
0:30	12:00	- 12:30	01 T					connection											
2:30	12:30			Orill at	controlle	d rate	e from 437	6m - 4395m	(avg ROF	P=7.6	m/hr) e	nsurin	g that there is	only one circu	lating o	onnectio	on in the ho	le at one ti	me.
1:00	15:00			-	te conne														
1:30 0:30	16:00	- 17:30 - 18:00						- 4411m (av	g ROP≖1	U.7 m/	mr).								
4:30	18:00							No succes	s. Re-om/	ram k	AWD to	chan	ge downhole to	ol attenuation	. Downl	link Pov	verdrive too	i.	
0:30	22:30			<u> </u>		-		- 4418m (av					g						
1:00	23:00			+		_		connection.	<u> </u>										
<u> </u>	<u> </u>			 				ease MW to		n³. Ma	ke sho	rt trip.							
		I C: :						on short trip		11000		1	3a aar ***	VD and d== "	444	4440			-
	4 hr nmary:	Circul	ate and if	ncrease I	ww # 147	o Kg	yın- 10 150	u kgym*. Col	INDI ONI I	4306	m - 44	im. F	Re-program MV	TO AND ONE V		- 4416			
Pre	jected	Make	short trio	to casing	shoe. P	001	to log.												
	rations:						<u>v</u>												
	afety	No ac	cidents, r	no incider	nts. No po	ollutio	on sighting	s reported. I	leid daily	pre-to	ur & sa	fety m	neetings.				Accidents:		NAR
L	sues:	Stand	by Vesse				a. Held pit	drill, took 65				w & c	rown savers.				Safety Rep:	N	Gilbert
Daily M		\$5	1,053		ngible Co			\$2,425	Daily Fon				\$33,509.00		Drilling C			\$655,	507
	d Cost:	\$2,5	25,707	Cum Ta	ngible Cos	R.		2,290,651	Cum For	n Eval	Cost:	\$	1,237,908.27		Drilling C	OSC		\$36,50	7,828
Chevro			56.7						<u> </u>				In.	Total .		ia -		\$79,47	6,760
Bulk Ge			24.9	Cement m ³		87.		4.05	8.8 m³	W.	7	0.4	Rig Heave, m	Pitch 0.2 deg		Roll, deg	0.3		
Country			Ca	nada			Rig:	OW Millennic	uw	:	30	0H23	4320060450	Dritting Reps:		Robich	aux / Ruite	nschild / B	ruton
Field:		Expk	oration			Lea	10:	EL 235	9			Welt:	Chevro	on et al Newb	um H-2:	3	Date:	22-Ju	n-02

		anac	la Res	sourc					vron et	al. N	ewbu					g Activity R	leport (metric)
Measured	Depth:			18 m	TVC):	4,418 n	PBTD:				Propo	sed MD:	6,40	Pro 0 m	posed TVD:	6,315 m
DOL:	34		DFS:	33		Spud	Date:	22-May-0	Daily	meters	8 :			Daily Rot Hrs:		HS Total Rot Hr	s: 56.5
Torque: Nm		Drag: kdaN	2.2	Rot Wt: kdaN	,		P/U Weight kdaN		S/O Wt: kdaN	3	100	Last B	IOP Test:	17-Jun-0	2	POB:	116
Last Cas				Set At:				MD				TVD	Shoe Test, kg/m	,3.	Laa	koff? Yes	 ☑ No
Cum Rot	Hrs on Ca		mm		Cum Rot		,502 m Casing Sin	e Last Calipe	r:	3,502		lock Se	N @:	16	21	KOP:	
Liner Size	r:		63	Set At:				MD	6	3.0	Ц	TVD	Liner Top At:			MD	4,110 m TVD
 				Туре:					Sample Fr	70cm:				FV.	PV.	YP.	Gel.
Mud Co:							-based		J		Pits	Wt,	1525	s/qt 190		4 Pe 22	Pa 23/21
WL API, cc/30min	1	ITHP:	7.2	FC(mm) mm	API/HTH	IP:	2.4	Solids:	18.4	% O#:	:	59.0	% Water:	22.6 SWR:	74	MBT, / 26 Kg/L 0.00	pH:
Psm;	3.3 E	S, volts		80	Carb:		CI: 41,0	Ca/Mg:		ASG:	4	20	Solids % HG/LC		24h	r Avg SOC %:	No cultings last 24 hrs
Engr Sen			Materia	is added	last										0.4		
<u> </u>		2	24 hrs:				1100 sx b	inte									
Drig Gas	:		Max Ga	BS:			Conn. Gas:		Trip	Gas:			Trip Ct:		Remarks:		
		1.65	+			.52	L	1.83	2		8. s. mm	52		1			
Bit No.	IADC	Size		Manufac	turer	S	erial Number	Тур	• N			Size	TFA, mm³	MD in		MD Out	TVD Out
4	M422	311		Hycalo	g	L	200600	RS 1	63 1	14	5	13	794	3,515 m			
						<u> </u>											
meters	Hou	rs	WOB,	RPM	1-	Row	O-Row	DC		Loc		В	G	Char		?Pull	Cost/meter
903	56.	50	6.2	150	,						1			1	$\neg \neg$		\$1,994.46
1	33.	-		<u> </u>	+		 		$\neg \dagger \neg$		\vdash		<u> </u>	ļ ··			#1,##9. 90
Total Len	gth of BH/		200	91 =	Вни	Desc	ription:		a Dica	is 6	S	·	Colleg No. 11			ton Flow collect	at aut
1000	N C-			91 m												Mag Flex collar, Flo	at 500,
,							onic, X/O, 3	- 210 mm (.c, x/O, 3	s - 168	mm H	WDP,	Jars, 20 - 168	mm HWDP (B	a to senso	r: APWD 15.28m,	
Res 15.		15.97m	, D&I 23.		nic 33.1 Rig		om Tr	iD 44	DCS	Size.		44	DP Size, mm:	400 Hour	s On		
- \$		109,00	-	0	/hr	\$24	.000 Time		mm:		2	41		168 Ja		1.5 Hrs Since Last	Inspection: 196.5
Bit .	Line	r, mm	Stro	ke, mete	rs m	YSTK	SPM	Press, KPa	liter/min	Je	t Vel, m	/sec	DP AV, m/min	DC AV, m/min	Bit HH	P BHHP/mm²	Pump HHP
4	1	40	4	0.3556	0.0	0159	150	12411	2380	<u> </u>	49.8		44.00	78.00	112	612.89	660
							l			ļ							
	Survey MD		Ang	ie :	Direct	ion	7	VD OV	N	/S Coor	rdinate		E/W Co	ordinate	Ve	rtical Section, m	DLS, 9/30m
Hrs.	(From		Code	Τ					0	peratio	ns Cov	ering 2	4 Hours Ending a	at Midnight	.		,
1:00	00:00		01	Contin	ue to cir	culate	bottoms u	D									
3:00	1:00	4:00	01 T	Circula	ate and i	ncrea	se MW to 1	524 kg/m³.	Flush cho	ke and	kill lin	es				 	
2:00	4:00	6:00	05	Pump	slug and	P00	H f/ 4418m	to 4226m.	Hole not to	aking ;	proper	fill. Til	Н.				
3:00	6:00	9:00	01 T	Circula	ate botto	ms up	. Check flo	w halfway k	SSWH a	ind at	SSWH						
2:00	9:00							not taking									
3:00	11:00			+				w halfway to			SSWH						
6:00 0:30	14:00 ·	20:00		 				to casing s		02m.							
0:30	20:30							from drifler's taking prop						· · · · · · · · · · · · · · · · · · ·			
3:00	21:00	24:00					on bottom		/G1 1M1.								
			1					·						· · ·			
			$oldsymbol{ol}}}}}}}}}}}}}}$														
				Note: I	leld fire	and a	bandon shi	p driff									
ļ	 		-	 													
<u></u>	<u> </u>			-													
 	 			-													
-	 			Since	midnite:	Circui	late bottom	s up. Back r	eam OOH	1.			·····				
	 		+	 				saming out									
	4 hr	Attem	pt to mak								out of	open h	ole. Function t	est BOP. TIH.	Circulate t	otms up.	
Sun	nmary:																
	jected	POOF	and log	well.													
<u> </u>	rations:	 														l A maide man.	
	nfety NJGS:							reported. F				_				Accidents: Safety Rep:	NAR
Daily Mu					n/v Hebr Ingible Co		a. neid pit		Seconds.				own savers.	Deily D	nilling Cost		AJ Gilbert
Cum Mu			6,955	1	ingible Co			\$3,230	Cum Form				33,509.00		rilling Cost		\$622,215
Chevron			42,662	ļ			\$3	2,293,881	-			\$1	,271,417.27	Total A			\$37,130,043
Bulk Gel			36.7	Cement	,		Fuel		Bulk	W			Rig Heave, m	Pitch,	Rot		\$79,476,760
m³.		2	4.9	m³	•	87.1	1 m³	4,02	5.4 m³		4	5.4		0.3 deg	0.3 000		
Country			Car	nada				W Millenniu	m UW	:	30		320060450	Drilling Reps:	Ro	bichaux / Ruitensc	hild / Bruton
Field:		Explo	oration			Loca	He:	EL 235	9			Well:	Chevro	on et al Newbu	m H-23	Dete:	23-Jun-02

Chevron Canada Resources Chevron et al. Newburn H-23 Drilling Activity Report (met												Report (metric)						
Measured Depth: TVD: 4,418 m							PRTD: Proposed					6,400 m			Propose		6,315 m	
DOL:	35		DFS:	34	Spi			2-May-02		meters:			Daily Rot Hrs:			HS Total Rot Hr	s: 56.5	
Torque: Drag: Nm 13558 kdaN 2.2					P/U Weigh kdaN					Last 8	OP Test:	17-Jun-02			POB:	124		
Last Cas			8 mm	Set At:		3,502 m	MD		3,502			Shoe Test, kg/n	n³: 16	21	Leekoff	Yes	₽No	
Cum Rot Hrs on Casing: 63.0 Cum Rot Hrs of Education Cum Rot Hrs of Edu						on Casing Sir	er: 6	63.0 Whipstock Set			(Q :			КОР:		4,110 m		
Liner Siz						MD T					Liner Top At:				MD	TVD		
Mud Ca:					ic-based	Sample From: Wt, Pits ke/m					FV. PV. 1525 s/qt 180 cP 25			25	YP, Ps 21	Gel. Pa 22/21		
WL API, cc/30min		HTHP:	THP: FC(mm) API/HTI- 7.2 mm		PI/HTHP:	P: 2.4		olids: 18.4		% Oil: 59.0		% Water: SWR: 22.6		MBT, 74 / 26 Kg/L 0.00		pH:		
Psm:	2.3	ES, volts	860			Ct 42,	000 Ca/Mg:	/Mg:		ASG: 4.20		Solids % HG/L0	3:			g SOC %: No cuttings last?		
Engr Service Materials added last 2 14 hrs: 251 sx barite 4.0 m³ base oil																		
	Drig Gas: Max Gas: Conn. Gas: Tno Gas: Tno Ct: Remarks:																	
Drig Gas: Mai			Max Ga	35:		Conn. Gas	:	Trip (Trip Gas:			Trip Ct:		Remarks:				
Bit No.	No. IADC Size			Manufacturer		Serial Numbe	т Туг	xe No	Jets, mm No. Size No.		Size	TFA, mm²	MD In			MD Out	TVD Out	
4	M422 311		<u> </u>	Hycalog		200600	RS ·	163 1	14	5	13	794	3,515 m			l,418 m	4,417 m	
<u> </u>					_	<u></u>				$\bot \bot$			4,418 m					
meters	Ho	urs	WOB, kdaN	RPM	I-Row	O-Row	D	- '	Loc		В	G	Char		?Pull		Cost/meter	
903	56.	.50	6.2	6.2 150		2	_ w	<u> </u>	A		×	1	ст		TD		\$1,994.46	
Total Ler	oth of BH			L	BHA Dec	lorintion:						<u> </u>						
Total Length of BHA: BHA Description:																		
	Bit Cost Row 1 109,000			0 Row 2 0 Rigs		\$ \$24,000 _ Trip			C Size.		41	DP Size, mm:	168 Hour	s On	On as I		Inspection: 196.5	
S Bit	Line	er, mm		ike, meters	/hr /m ² /STK	Tirr	Press, KPa	Imm:	<u> </u>			DR AV m/min	DC AV, m/min	_	41.5 HHP			
1			+			+	SPM Press, RPa III		n Jet Vel, m		360	DF AV, IIIIIIII	I DC AV. IIIIIII	B#1	ANP	BHHPmm²	Pump HHP	
		140	0.3556		0.0159	' 		 	┢═			<u> </u>		 				
Survey MD		Ang		ile	Direction	TVD		N	N/S Coordinate			E/W Coordinate		Vertical Section, m		DLS, 9/30m		
						 						<u> </u>						
<u> </u>	-	البيا																
Hrs.	hh:		Code	Operations Covering 24 Hours Ending at Midnight														
3:00 6:30	3:00	- 3:00 - 9:30			Continue to circulate bottoms up @ 4418m. Check flow half way to SSWH and at SSWH. Back ream f/ 4418 m - 3502 m.													
8:00		- 17:30						97m f/ 15 minutes. Continue POOH.										
1:30	17:30			Break ou	Break out and L/D MWD and Powerdrive BHA													
0:30 2:30	19:00	- 19:30 - 22:00			Rig service: Replace 2 actuator cams for IBOP on TDS.													
2:00	22:00	- 24:00		Hold pre-job safety meeting w/ CT, TSF, Schlumberger. R/U Schlumberger wireline. P/U log run #1 tools. Log run #1: quad combo (AIT - DSI - LDT - CNL - MGS - EMS)														
				<u> </u>														
<u> </u>			+-	 														
<u> </u>	<u> </u>		_															
 	 																	
																	 	
			-	<u> </u>														
-	 		╁	 														
P.O. @ 05:00 24-June: Continue Log run #1																		
24 hr Summary: POOH to log. R/U and start log run #1																		
Projected Finish log run #1 and log run #2																		
Operations:																		
	fety	No accidents, no incidents. No														Accidents:	NAR	
Issues: Deily Mud Cost:				sel is the m/v Hebron : Daily Tangible Cost:		Sea. Held pit drill, took 6		seconds. Fundamental Points Form Eva		Cost:			Daily D	Daily Drilling Cost		Safety Rep:	AJ Gilbert	
Cum Mud Cost:		\$17,559		Cum Tangible Cost:		\$16,929			Cum Form Eval Co			33,509.00		Cum Drilling Cost:			\$636,937	
Chevron %:			\$2,560,220 66.7			\$2,310				\$1		,304,926.27		Total Appr:			\$37,766,979	
Bulk Gel m³			Cement,			87.1 m ³ 3,969.4			Wt.	4.	7.2	Rig Heave, m	Pitch,		Rot,		\$79,476,760	
Country:				lm³ nada	- 57	Ria:	3,96 DW Millenniu	LWI			7.2 0H234	320060450	0.3 deg Drilling Reps:		deg Robich	0.4 aury / Ruitenech	hild / Boston	
Field:		Explo	ration		Le	100:	59			Welt	Chevron et al Newburn H-2			Robichaux / Ruitenschild / Bruton Date: 24-Jun-02				

Chevron Canada Resources Chevron et al. Newburn H-23 Drilling Activity Report (metric)																
Measured Depth: TVD: 4,418 m 4,417 m							PBTD: m	PBTD: Proposed MD:					6,400	Propose () m	sed TVD: 6,315 m	
DOL:	36		OFS:	35	Spuc	Date:		22-May-02 Daily meters:					Daily Rot Hrs:		HS Total Rot Ho	s: 56.5
Torque: Nm		Orag: kdaN		Rot Wt: kdaN		P/U Weigh		S/O Wt: kdaN			Last B	OP Test:	17-Jun-0	2	POB:	127
Last Casi	ng Size:		mm	Set At:	3	,502 m	MD		3,502	m	TVD	Shoe Test, kg/m		Leekoff	Yes	₽No
Cum Rot	Hrs on C		63	Cum Rot Hrs on Casing Since			nce Last Calipe				ipstock Set @:				KOP:	4,110 m
Liner Size	i.					MD				TVD	Liner Top At:		MD		TVD	
Mud Co:	M	hased		Sample From: Wt, Pits kg/m² 1525						FV. PV, YP, Get, s/qt 167 cP 24 Ps 18 Ps 28/2:						
WLAPI, HTHP:				Synthetic-based FC(mm) API/HTHP:			Solids: % Oil:				% Water:	SWR:		MBT,	pH:	
Psm: ES volts			mm 2.4 Carb: Ct:			Ca/Mg:	18.4 /g: ASG:			59.0	Solids % HG/L0	22.6 3:	74 / 26 24hr Av	g SOC %:	No curange last 24	
Engr Service Materials added last											hrs					
2 24 hrs: 16 pails Clean up 5 sx caustic																
Drig Gas:			Max Ga	is:		i.	Trip (Gas:			Trip Ct		Remarks:			
Bit No. IADC Size			Manufacturer Serial Number			er Typ		Jets, mm o. Size No. Size			TFA, mm²	MD In		MD Out	TVD Out	
	BRING. DOC SIZE						+	No	NO. SIZE		ize					
		<u> </u>	+				_									
meters	meters Hours WOB.				I-Row	O-Row		Loc			1	G	Char		?Pull	Cost/meter
	kdaN		├──			_	 		+		<u> </u>				40/411151	
 				0	 							 				#VALUE!
Total Len	gth of Bi	1A:			BHA Des	cription:						1	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
		¥.1.							•				-			
 		**		· · · · · · · · · · · · · · · · · · ·	 											
Bit Cost S	Row 1	109,00	0 Row 2	0	Rig\$ \$2		rip 14.	DC S	ize.	24	1	DP Size, mm:	168 Hours		Hrs Since Last	Inspection: 196.5
Bit	Lin	er, mm	Stro	ke, meters	m ³ /STK	SPM	Press, KPa	liter/min	Je	t Vel, m	3 6 C	DP AV, m/min	DC AV, m/min	Bit HHP	BHHP/mm²	Pump H#HP
		140	+	0.3556	0.0159	 			T			<u> </u>				
					1 0.0.00											
	Survey M	D	Ang	jle	Direction		TVD	N/S Coordinate				E/W Coordinate		Vertical Section, m		DLS, 9/30m
Hrs.		m-To) :mm	Code					C	peratio	ons Cov	ring 2	4 Hours Ending	at Midnight			
9:00	00:00			-											time out of hole	= 22 hrs 45 minute
10:00	9:00	- 19:00	25				2, MDT. Log 1 4°C @ 15:50						oints. Unsucces	ISTUI.		
5:00	19:00	- 24:00	25				3. Log run #3:									
				Note: C	ould not ma	ke planne	d conditioning	trip due t	o repa	ir work	on iro	on roughneck.				
ļ																
	-	_	┪	Note: S	onic log four	na top of c	ement behind	13-5/6	asing	@ 202	JIII!					
			+-													
		_	-	ļ												
-			-	\vdash												
			1													
 	<u> </u>		+	 												
-	┼		+-	+			· · · · · · · · · · · · · · · · · · ·						·			
	\vdash		1													
			Ϊ			_		trip. Max	imum	tempe	rature	on log run #3	= 104°C.			
	4 hr nmery:	Finish	Log Run	#1. Log F	Run #2. Star	t Log Run	#3									
-	iected	Finish	Log Run	#3. Make	conditionin	a trio.		01								
Projected Finish Log Run #3. Make conditioning trip. Operations:																
	afety						Held daily pre-tour & safety meetings. RC					inspect riser &	ВОР	Accidents:	NAR	
	ues:	Stand	by Vesse	is the m/v Hebron Sea. Function Daily Tangible Cost:			on floor & cro	Daily Form					[Daily D	rilling Cost:	Safety Rep:	AJ Gilbert
Daily Mud Cost: Curn Mud Cost:			9,146		\$16,			Cum Form Eval C				\$39,557.00		Cum Drilling Cost:		\$608,507
\$2,50 Chevron %:			569,367	Juli largera Cost.			\$2,327,739	327,739				1,344,483.27		Total Appr		
Bulk Ge			66.7	Cement,		Fu		Buk	Wt,			Rig Heeve, m	Pitch.	Roil,		\$79,476,760
m ³ Country			24.9	m³	87		3,93	9.4 m³			7.2	L	0.3 deg Drilling Reps:	0.3 deg	0.4	
Field:				nada	ila	156:	DW Millennit	ım		30	OH23	4320060450	1		haux / Ruitenso Date:	
1 ~		Expl	oration		1		EL 235	9			1	Chevr	on et al Newbu	m n-23	.1	25-Jun-02

Exploration

Chevron et al Newburn H-23

Chevron et al Newburn H-23

27-Jun-02

Chevron et al Newburn H-23

28-Jun-02

Exploration

Chevron et al Newburn H-23

DW Millennium

EL 2359

Chevron et al Newburn H-23

Canada

Exploration

Chevron et al Newburn H-23

Chevron et al Newburn H-23

Exploration

Chevron et al Newburn H-23

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

Jones / Ruitenschild / Alworth

24 hr Summery:	Drill ahead	from 4424m -	4441m.	No signal from	MW	D - POOH a	nd change o	out MWD. RIF	4.				
Projected Operations:	Cont to RII	H, relog previo	usly drill	ed section, drill	ahea	ed as per pro	gram.						
Safety	No accidents,	no incidents. No p	oflution si	ghtings reported. H	feld de	ily pre-tour & sa	fety meetings.	ROV inspect ris	er & BC	P.		Accidents:	NAR
Issues:	Standby Vess	el is the m/v Hebro	n See. He	ald crew awarenes:	s meet	ings dicussing r	ecent Transoc	een Peregrin 1 fa	stality in	ident in	Brazil.	Safety Rep:	AJ Gilbert
aily Mud Cost:	\$11,225	Daily Tangibi	e Cost	\$2,425	5	Deily Form Eve	Cost	\$35,100		Daily D	rilling Cost		\$554,910
um Mud Cost	\$2,842,99	Cum Tangibi 5	Cost	\$3,539,0	112	Cum Form Evel	Cost	1,937,515		Cum D	rilling Cost		\$46,034,088
hevron %:	66.7				\neg					Total A	opr:		\$79,476,760
ulk Gel,	24.9	Cement, m²	204.6	Fuel,	3,631	Bulk W.	329.7	Rig Heave, m	. 0.3	Plich, deg	Roll, 0.3 dag	0.3	
ountry:	(Canada		Rig: DW Mille	mniun	n UWI:	300H234	1320060450	Oriting	Reps:	Jone	s / Ruitensc	hild / Alworth
ield:	Exploration)	Loss	EL	2359)	Well:	Chevror	ot al	Newbu	m H-23	Deta:	5-Jul-02

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

Jones / Ruitenschild / Alworth

4.536 m	Company Comp	4.53			Canad	a Res	source					ron et	al. No	wburn					ctivity Re	port (metric)
44 10 10 10 10 10 10 10	1350	4		l Depth:			8 m				PBTO:				posed MD:		400 m				5 m
1315 John 23 John 23 John 24 John 245 John 225 John 235 John 200-0-22 121	13.5	1315 1315	OL:	48				s				2	meteri			Daily Rot H	ns: 23	3.0		%: 41	.5
Compage 19	Control Cont	Carring Size Series Carring Size Series	m orque:	13558	Orag: leteN			231			t 245		2:		t BOP Test	30-Ju	n-02	ľ	POB:	12	21
No. Part P	## A 1 TO CONTROLLED 1 TO CO	The Print of Carriery 1.1 Down For Print on Casting Service Print Print Down For Print Down For Print Print Down For Print	est Cas	ing Size:	251	mm	Set At:		4.40	04 m	MD		4,402	m TV	Shoe Test, kg	/m³:	1861 Les	koff?	NO		
Second S	### Sex Mo Prop Synthetic-based Server Force Pets Impre 1501 Ind 170 Prop 170 Prop 150 Ind 170 Prop 150 Ind 170 Prop 150 Ind 170 Prop 150 Ind 170 Prop 150 Ind 170 Prop 150 Ind 170 Prop 150 Ind 170 Prop 150 Ind 170 Prop 150 Ind	Math	um Rat	Hrs on (.5 C	um Rot H			nce Last Call	per: 4	1.5	Whipstock	Set @:			1	KOP:	4,11	0 m
Mart	March	March	ner Size	B:							MD			TV	Liner Top At			,	MD		
Process Proc	March Marc	And the control of th	lud	•••			Typex	0	h - 41 -	4		Sample F									12/11
2.6 S. Jose	March 1	Total Company Compan	VL API,		HTHP:		FC(mm) A			Dased	Solids:										13/15
2.6 823	2	2	c/30mi		ES units	4.0			Ic		CaMo	21.5	ASG:	60							
See Second Processes Secon	19 Gest 1.20 Med Gest 2.80 Gern Gest 0.43 Frog De Carbon Frog Control (1975) 100 at 22 Frog De Carbon Frog Control (1975) 100 at 2 Frog De Carbon Frog Con	Second Commence 2 Second Commence 2		2.6			23			40,0	000			4.10			8.9/1.0				
Company Comp	No. Mo Mo Sta	No. LoC Size ManCaler Sove Number 796 No. Size No. No. LoC Size ManCaler Sove Number 796 No.	ngr ser	VICE	2				2	ea 22.6	67kg bg VG	Plus	120	ea 22.67	kg bg CaCl2	488 ea 4	5.36kg bg B	Barit			
120	1.20	1.20							5	0 ea 22	.67kg bg V										
Marco Sect Membrace Sperishtwarder Sperishtward	No. 10 10 10 10 10 10 10 1	No. Sept March Mode March March Mode March	rig Gas	i:	1.20	Max Ga	MS:	2.8	10 C	onn. Gas	0.43	Trip	Gas:		Trip CI:		Remerks:		Max gas	s at 4907r	m
R2 M322 216	RR2 M322 216	R2 M322 216 Hycatog 201608 R3162 2 8 7 4 10.3 454 4.441 m No. 1 Mov. 1	BR No.	IADC	Size	1	Menufactur	ner	Seri	el Numbe	т Тура	, N			TFA, mm²	МО	in	N	AD Out	TVD	Dut
Hours	Note Note	### Hours MON RPPM RROW C-Row DC Loc B G Own TPM# Coentrol und. ### Coentrol und. ##	. DD2	M322	218	1	Hycalog			01608	PS16					444	1 m				
March Mount March Marc	1972 1975	Second S	KNZ	MOZZ	210	+-	riycalog	_		01000	- `````	+	+	H	151	1					
Survey No. Street	### 283.24 m BNA Descriptors 215mm RS 162 Hycalog Bit, PD675 bias unit, PD675 Extension sub, PD675 Control runk, 283.24 m BNA Descriptors 215mm RS 162 Hycalog Bit, PD675 bias unit, PD675 Extension sub, PD675 Control runk, 283.24 m BNA Descriptors 283.24 m BNA Descriptors 286.75 MWD, Isonic, XO, 215mm stab, 15 - 127mm HWOP, HE Jars, 5 - 127mm HWOP. 80	### BYALUE! ### B	neter	140	urs		RPM	J-Ro	T	O-Row	DC	١,	Loc	В	G	Ć,			?Pull	Cost/m	otor
Length of Birk 28.3.24 m BNA Descriptor: 216mm RS162 Hycalog Bit, DD675 bias unit, PD675 Extension sub, PD675 Control unit, 3mm NM stab, Float sub, ARC675, MWD, Isonic, X/O, 210mm stab. 15 - 127mm HWDP, HE Jara, 5 - 127mm HWDP. 12 mm Nm Stab. Rose 10 mm Nm Stab. Rose 10 mm Nm Stab. Rose 10 mm Nm Stab. Rose 10 mm Nm Stab. Rose 10 mm Nm Stab. Rose 10 mm Nm Stab. Rose 10 mm Nm Nm Stab. Rose 10 mm Nm Nm Nm Nm Nm Nm Nm Nm Nm Nm Nm Nm	281 Leve, run Strote, means in 75T S STM Press, KPs Remin Jar Vis, mace CP AV, nature DC AV, nature DC AV, 200 D 137 36484 2174 79.8 91.0 91.0 267 3033.61 1773 Survey MD Avgie Direction 170,000 N SC Coordinate EM Coordinate Visition 186.3 216.5 126.5 126.5 126.5 127 N SC State, 127 N STATE N	Langer of BHA 28.3.24 BHA Description: 216mm RS162 Hycatog Bit, PO675 bias unit, PO675 Extension aub., PO675 Control Unit,			-	icteN	 	+-	+		ٔ آ	- - 		ŀŤ	+	+	-				
23.24 m	23 24 m 21 mm NM stab, Float stub, ARCST5, MVD, Isonic, X/D, 21 form stab, 15 - 127mm HWDP, HE Jars, 5 - 127mm HWDP.	23.24 m	497		-+			+-	\dashv		+			 -		+				#VAL	JE!
23.24 m	23 24 m 21 mm NM stab, Float stub, ARCST5, MVD, Isonic, X/D, 21 form stab, 15 - 127mm HWDP, HE Jars, 5 - 127mm HWDP.	23.24 m	otal Le	ngth of B	HA:		<u> </u>	BHAI	Descri	ption:								_		- •	
Second Control Contr	Weight of BHA - 13 3kdaN; weight below jars - 10kdaN; Cost Post 70,000 Post	Target of 8HA - 13.3 data weight below jars - 10kdah																ub, F	20075 Contro	or unit,	
Signature Tournoon Row 2 Rig 25,000 Trop Trop Trop Continue Tournoon Rig 25,000 Rig 25,000 Trop Trop Rig 25,000 Rig 25	Cost Row 70,000 Row Rig 20,000 Trop 14,0 DC State, 127 DF State, mile; 27 Indicated 15 Indicate	Corr Corr									210mm sta	aD, 15 -	127m	m HWDI	r, HE Jars, 5	12/mm H	MUP.				
R	Second S	Struck			_						ip 14			127	DP Size, mm	: 127 H		1 5	Hrs Since I and	Inspertion	41 1
Survey MO	Surey MD	RR2				+			$\overline{}$		a,hr	Imm	$\overline{}$		DRAY ==		Jars:	-			
Survey MD	Suney MO	Survey MO		<u>"</u>	ier, mm	Sero	Ke, meters	m-/s		3PW		(Ref/Ital)	-		+		+	-			
### ### ##############################	4.890.00 m 27.85 303.93 4.853.94 m 119.02 -155.23 196.41 m 2.64 4.920.94 m 28.81 299.62 4.880.45 m 126.51 -168.33 210.57 m 2.17 4.933.96 m 28.04 298.15 4.909.52 m 134.08 -182.05 226.09 m 0.82 Mrs.	4.990.00 m 27.85 303.93 4,853.94 m 119.02 .156.23 196.41 m 2.44 4.90.94 m 28.61 299.62 4.860.45 m 126.51 .168.33 210.57 m 2.17 4.953.99 m 28.04 298.15 4.909.52 m 134.08 .182.05 226.09 m 0.82 (minum) Cost	RR2	-	140	1-9).3556	0.01	159	137	36494	2174	+	79.6	91.0	91.0	267	-	3033.61	1 17	73
4,920.94 m 28.61 299.62 4,880.45 m 126.51 -168.33 210.57 m 2.17 4,953.96 m 28.04 298.15 4,909.52 m 134.08 -182.05 228.09 m 0.82 1,	4.890.00 m 27.85 303.93 4,853.94 m 119.02 -156.23 196.41 m 2.44 4.920.94 m 28.61 299.62 4.880.45 m 126.51 -168.33 210.57 m 2.17 4.953.96 m 28.04 299.15 4.909.52 m 134.08 -182.05 226.09 m 0.82	4.990.00 m		Survey M	, T	And	ile	Directio	, †			N	.l √S C∞	rdinate	EW	Coordinate		ertical	Section, m	DLS,	*/30m
4,920,94 m 28.61 299.62 4.880.45 m 126.51 -168.33 210.57 m 2.17 4,953.96 m 28.04 298.15 4.909.52 m 134.08 -182.05 228.09 m 0.82	4.920,94 m	4.920.94 m 28.61 299.62 4.880.45 m 126.51 -168.33 210.57 m 2.17 4.953.96 m 28.04 298.15 4.909.52 m 134.08 -182.05 226.09 m 0.82 Company Code	-					303 0	,	4 95	3 94 m		119	02		56 23	1	196	3 41 m	1 2	64
4.953.96 m 28.04 298.15 4.909.52 m 134.08 -182.05 226.09 m 0.82 Tr. (From -To)	4,953,96 m 28,04 298,15 4,909,52 m 134,08 -182,05 226,09 m 0.82 Hrs. (From 170) Code Operations Covering 24 Hours Ending at Midnight	4.953.96 m 28.04 298.15 4.909.52 m 134.08 -182.05 226.09 m 0.82 (rs. Frimm-Indight Code Coperations Covering 24 Hours Ending at Manager Ma							一								+				
Code	Hr.	From Top Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Primm Code Code Primm Code							_								_				
30 00:00 - 20:30 02 Drill shead and survey from 4603m to 4870m. Avg ROP = 13m/hr, WOB = 4.4-6.7kdaN, RPM = 150,	20:30 00:00 - 20:30 02 Drill ahead and survey from 4603m to 4870m. Avg ROP = 13m/hr, WOB = 4.4-6.7kdaN, RPM = 150.	02 00:00 - 20:30 02 Drill ahead and survey from 4603m to 4870m. Avg ROP = 13m/hr, WOB = 4.4-6.7kdaN, RPM = 150.		(Fro	m -To)		Ť	230.11	- -	4,50	3.02										
20:30 - 21:30	1:00 20:30 - 21:30 14 Flush choke and kill lines, take SCR's, function test BOPs from bridge console on blue pod. 2:30 21:30 - 0:00 02 Drill ahead and survey from 4870m to 4938m. Avg ROP = 27.7 zm/hr, WOB = 3.6-8.0kdaN, RPM = 150, Pumps = 2174Lpm/ 36494KPa, ECD = 1697kg/m². Operations @ 0500hrs, 7/8: Drilling ahead from 5019m. Operations @ 0500hrs, 7/8: Drilling ahead from 5019m. 24 hr Summey. Policiad Operations Drilling ahead. Drilling	20:30 - 21:30 14	20:30			02	Drill al	head an	nd su	rvey fro	m 4603m t	o 4870m	n. Avg	ROP =	13m/hr, WOB	= 4.4-6.7kd	aN, RPM =	150	i,		
21:30 - 0:00 02 Drill ahead and survey from 4870m to 4938m. Avg ROP = 27.2m/hr, WOB = 3.6-8.0kdaN, RPM = 150,	2:30 - 0:00 02 Drill ahead and survey from 4870m to 4938m. Avg ROP = 27.2m/hr, WOB = 3.6-8.0kdaN, RPM = 150. Pumps = 2174Lpm/ 36494KPa, ECD = 1697kg/m². Operations @ 0500hrs, 7/8: Dnilling ahead from 5019m. Operations @ 0500hrs, 7/8: Dnilling ahead from 5019m. 24 hr Surmary. Drilling ahead	21:30 - 0:00 02 Drill ahead and survey from 4870m to 4938m. Avg ROP = 27.2m/hr, WOB = 3.6-8.0kdaN, RPM = 150, Pumps = 2174Lpm/ 36494KPa, ECD = 1697kg/m³. Operations @ 0500hrs, 7/8: Drilling ahead from 5019m. Operations @ 0500hrs, 7/8: Drilling ahead from 5019m. 24 ir Surmey. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Surmey: Projected Operators. No accidents, no incidents. No pollution signifungs reported. Held daily pre-bur & safety meetings. Held weekly muster and abandon rig drills. Safety Tampoocen safety meeting ROV inspect riser & BOP. Standby Vessel is the m/v Helbron Sea. Safety No accidents, no incidents. No pollution signifungs reported. Held daily pre-bur & safety meetings. Held weekly muster and abandon rig drills. NAR Safety Rex. A.J Gilbe sign Mad Cost: \$19,081 Safety Tampoocen safety meeting ROV inspect riser & BOP. Standby Vessel is the m/v Helbron Sea. Safety Rex. A.J Gilbe Safety Rey. A.J Gilbe					<u> </u>														
Pumps = 2174Lpm/ 36494KPa, ECD = 1697kg/m². Operations @ 0500hrs, 7/8: Drilling ahead from 5019m. Operations @ 0500hrs, 7/8: Drilling ahead from 5019m. Drilling ahead. Drilling ahead. Operations Drilling ahead. Drilling	Pumps = 2174Lpm/ 36494KPa, ECD = 1697kg/m². Operations @ 0500hrs, 7/8: Drilling ahead from 5019m. Deprecations @ 0500hrs, 7/8: Drilling ahead from 5019m. Drilling ahead. Drilling ahead. Drilling ahead. Deprecations @ 0500hrs, 7/8: Drilling ahead from 5019m. Drilling ahead. Drilling Cost. Safety Rox. Safety Rox. Acciderts: Daily Tralling Cost. Safety Rox. Safety Rox. Daily Drilling Cost. Safety Rox. Safety Rox. Daily Drilling Cost. Safety Rox. Safety Rox. Daily Drilling Cost. Safety Rox. Daily Drilling Appt. Safety Rox. Safety Rox. Daily Drilling Appt. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead. Drilling ahead	Pumps = 2174Lpm/ 36494KPa, ECD = 1697kg/m³. Operations @ 0500hrs, 7/8: Drilling ahead from 5019m. Drilling ahead from 5019m. 24 lr Summer, Projected Drilling ahead. Drilling ahead from 5019m. Accidents: NAR Safety Rax AJ Gibe Safety Rax AJ Gibe Safety Rax AJ Gibe Safety Rax AJ Gibe Safety Rax Safety																= 1:	50.		
24 hr Summery: Drilling shead. Drillin	24 hr Summery: Projected Operations: Select Insulation of the Control of the Co	24 hr Summery: Projected Operations: Safety Heat weekly Transcores safety meeting, ROV inspect riser & 8CP. Standby Vessel is the m/v Hebron Sea. Safety Heat weekly Transcores safety meeting, ROV inspect riser & 8CP. Standby Vessel is the m/v Hebron Sea. Safety Heat weekly Transcores safety meeting, ROV inspect riser & 8CP. Standby Vessel is the m/v Hebron Sea. Safety Heat weekly Transcores safety meeting, ROV inspect riser & 8CP. Standby Vessel is the m/v Hebron Sea. Safety Rop: AJ Gibbe Safety Rop: A	2.50	21.50	- 0.00	+ **															
24 hr Summery: Drilling shead. Drillin	24 hr Summery: Projected Operations: Select Insulation of the Control of the Co	24 hr Summery: Projected Operations: Safety Heat weekly Transcores safety meeting, ROV inspect riser & 8CP. Standby Vessel is the m/v Hebron Sea. Safety Heat weekly Transcores safety meeting, ROV inspect riser & 8CP. Standby Vessel is the m/v Hebron Sea. Safety Heat weekly Transcores safety meeting, ROV inspect riser & 8CP. Standby Vessel is the m/v Hebron Sea. Safety Heat weekly Transcores safety meeting, ROV inspect riser & 8CP. Standby Vessel is the m/v Hebron Sea. Safety Rop: AJ Gibbe Safety Rop: A		<u> </u>																	
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpite Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth		<u> </u>		-	Opera	itions @	050	Ohrs, 7/	8: Drilling a	head fro	om 50	19m.							
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpite Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth		+		+-	 														
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpite Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth																			
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpite Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth																			
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpite Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth		├			 														
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect near & BOP. Standby Vessel is the miv Hebron See. Safety Repx A.J. Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpite Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth		<u> </u>																	
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpitie Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost: \$79,476,760 Deily C	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth																			
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpitie Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost: \$79,476,760 Deily C	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth		-		+-	┼														
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Roy Cost: \$19,081 Delly Tangible Cost: \$2,425 Delly Form Evel Cost: \$33,660 Delly Drilling Cost: \$47,377,543	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpitie Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost: \$79,476,760 Deily C	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth		t -		+	+-														
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Rept. AJ Gitbert #W Mud Cost \$19,081 Delly Tangible Cost \$2,425 Delly Form Evel Cost \$33,660 Delly Drilling Cost \$619,516 Cum Transcozen Safety Rept. Safety Rept	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpitie Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost: \$79,476,760 Deily C	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth																_			
Summary. Projected Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron See. Safety Rept. AJ Gitbert #W Mud Cost \$19,081 Delly Tangible Cost \$2,425 Delly Form Evel Cost \$33,660 Delly Drilling Cost \$619,516 Cum Transcozen Safety Rept. Safety Rept	Summery. Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect nieer & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A J Gitbe Deily Dritting Cost: \$3,540,860 Deily Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpitie Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr: \$79,476,760 Deily Cost: \$79,476,760 Deily C	Summery: Projected Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abandon rig drifts. NAR Held weekly Transcosens safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe safety Mud Cost: \$19,081 Daily Transpible Cost: \$19,081 Daily Transpible Cost: \$2,425 Daily Form Evel Cost: \$33,660 Daily Drifting Cost: \$619,516 Lam Drifting Cost: \$47,377,543 Delty Form Evel Cost: \$2,046,685 Total Appr: \$79,476,760 Lift Get, 24.9 m* 204.6 Rig: DW Millennium WW: 30H234320080450 Dest: Jones / Ruitenschild / Alworth		Ц.,	Dell's	n abass	<u> </u>														
Operations: Safety Issues: Held weekly Transcozen safety meeting. ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Deliy Drilling Cost: NAR Gilbert S19,081 Deliy Tangible Cost: \$2,425 Deliy Form Eval Cost: \$33,660 Deliy Drilling Cost: \$47,377,543	Operations: Safety Issues: No accidents, no incidents. No pollution signifings reported. Held daily pre-lour & safety meetings. Held weekly muster and abandon rig drills. Accidents: NAR Held weekly Transcosen safety meeting. ROV inspect riser & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A.J. Gibbs Deily Mud Cost: \$19,081 Deily Transcosen safety meeting. ROV inspect riser & BOP. Standby Vessel is the miv Hebron See. Safety Rept: A.J. Gibbs Deily Drilling Cost: \$3,360 Deily Drilling Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Transpite Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,885 Cum Drilling Cost: \$47,377,543 Chevron %: 86.7 Total Appr: \$79,476,760 Bulk Get, m ² 24.9 m ² 204.6 m ² 3,525.2 m ² 319.4 Roll, 0.5 deg 0.3 deg 0.3 Currency Rolls: UMbt Drilling Rost:	Operations: Safety Issues: No accidents, no incidents. No pollution sightings reported. Held daily pre-bour & safety meetings. Held weekly muster and abendon rig drifts. No accidents, no incidents. No pollution sightings reported. Held daily pre-bour & safety meetings. Held weekly muster and abendon rig drifts. NAR Held weekly Transcoopen safety meeting, ROV inspect riser & BOP. Standby Vessel is the mV Hebron Sea. Safety Rep: AJ Gitbe safet			- Crumn		·														
Safety Safety No accidents. No pollution signifings reported. Held daily pre-tour & safety meetings. Held weekly muster and abendon rig drifts. Accidents: NAR Held weekly Transocean safety meeting. ROV inspect riser & BCP. Standby Vessel is the mV Hebron Sea. Safety Rep: AJ Gitbert AJ Gitbert S19,081 Deily Tangible Cost: \$2,425 Delly Form Eval Cost: \$33,660 Delly Drifting Cost: \$619,516 Total Appr: 570,431	Safety Individents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and abendon rig drifts. Accidents: NAR Held weekly Transocsen safety meeting. RCV inspect riser & BOP. Standby Vessel is the mV-Hebron Ses. Safety Rept. AJ Gifbe Delty Mud Cost: \$19,081 Delty Tangible Cost: \$2,425 Delty Form Evel Cost: \$33,660 Delty Dritting Cost: \$619,516 Cum Mud Cost: \$2,909,399 Cum Tangible Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Dritting Cost: \$47,377,543 Chevron %: 66.7 Total Appr. \$79,476,760 Delth Cost. \$10,000 Place Port Port Port Port Port Port Port Port	Safety Issues: No accidents. No pollution sightings reported. Held daily pre-tour & safety meetings. Held weekly muster and absendin rig drills. Accidents: NAR Held weekly Transocoan safety meeting. ROV inspect riser & BCP. Standby Vessel is the mV Hebron Sea. Safety Rept: AJ Gitbe all Mud Cost: \$19,081 Dealy Transpible Cost: \$2,425 Dealy Form Evel Cost: \$33,660 Dealy Drilling Cost: \$619,516 um Mud Cost: \$2,909,399 Cum Tangible Cost: \$3,543,862 Cum Form Evel Cost: \$2,046,685 Cum Drilling Cost: \$47,377,543 Total Appr: \$79,476,760 Dealy Country: \$79,476,760			Drillin	g ahead	1.														
Salety Not Cooker Not Proceedings Report Service A BOP Standby Vessel is the mV Hebron See. Safety Rep.: A J Gitbert Report Service A Se	No accounts, no including and special manufactures and product assets with the mixture of the	Safety Reg					lands	No.			andred their			fatu mani	ne bled week-	number and ab-	andon do delas		Accidents:	MA	. P
## Mud Cost \$19,081 Deity Tangible Cost \$2,425 Deity Form Eval Cost \$33,660 Deity Drilling Cost \$619,516 Deity Drilling Cost \$619,516 Cum Tangible Cost \$3,543,862 Deity Drilling Cost \$47,377,543	Deally Mud Cost \$19,081 Deally Tangible Cost \$2,425 Dealy Form Evel Cost \$33,660 Deally Drilling Cost \$619,516	Sample S															y				
m Mud Cost \$2,909,399 Cum Tangble Cost \$3,543,862 Cum Form Evel Cost \$2,046,685 Cum Drilling Cost \$47,377,543	Cum Mud Cost \$2,909,399 Cum Tangible Cost \$3,543,862 Cum Form Evel Cost \$2,046,685 Cum Drilling Cost \$47,377,543	um Mud Cost \$2,909,399 Cum Tangible Cost \$3,543,862 Cum Form Evel Cost \$2,046,685 Cum Drilling Cost \$47,377,543 herron %: 66.7 Foel Appr: \$79,476,760 uit Gel, P. 24.9 Cament, M. 204.6 Fuel, M. 3,525.2 Bulk Wt. M. 319.4 Plich, Roll. O.5 dag 0.3 dag 0.3 oursy: Canada Rig: DW Millennium UWE: 300H234320060450 Drilling Reps: Jones / Ruitenschild / Alworth	Deily N	lud Cost			_									D	ily Drilling Co	×t			
event %:	Chewron %: 66.7 Total Appr: \$79,476,760	Total Appr: \$79,476,760 Total Appr: \$79,	Cum M	ud Cost			Cum Ta	ngible Co	ost			Cum Fo	rm Evel	Cost		a	m Drilling Co	st			
99.7	Bulk Get, Carment, Fuel, Bulk Wt. Rig Heave, m Pitch. Roll, m² 24.9 m² 204.6 m² 3,525.2 m² 319.4 0.5 dag 0.3 dag 0.3 Country IBin: ILWh: Dorsting Report	Lak Get, Cement. Puet. Bulk Wt. 319.4 Rig Heeve, m Pkich, Roll. 24.9 m² 204.6 m² 3.525.2 m² 319.4 UWK: 300H234320080450 Drilling Reps: Jones / Ruitenschild / Alworth	Chevro	n %:			1			•	-1- 1-1-00					To	tel Appr:				
ik Gel, Cernent, Fuel, Bulk Wt, Rig Heave, m Plach, Roll,	Country Rice U.W. Oriting Reps.	ourley: Canada Rig: DW Millennium UW: 300H234320060450 Drilling Reps: Jones / Ruitenschild / Alworth		el,					204 1					310					0.3		
uriny. Rio: UW: Drilling Reps:		ett keest Wet Dest 7-1-00	Courts	f.	2					Rio		ÜM				Drilling Re	108			ild / Alwn	
	First: News (West:	EXPIORATION EL 2359 Chevron et al rewould in 25 7-504-02	Field:				nadá		l	<u> </u>									Dete:		

- 100 miles

ountry:

Canada

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

Jones / Ruitenschild / Alworth

Chevron et al Newburn H-23

9-Jul-02

Exploration

Chevron et al Newburn H-23

Exploration

Chevron et al Newburn H-23

DW Millermi

Exploration

EL 2359

Janes / Curren / Alworth

	ron C	anada	Res	ources				vron e	t al. Ne	wburn l			Dri			Report music
Measured	/ Depth.		5,40	6 m	TVD:	5,32	P8TD: 4 m			Prop	osed MD:		6,400 m	Propose		6,315 m
DOL	54		*8	53	Spud	Date:	22-May-	Da Da	ly meters:		0 m	Oally Ro	t Hrs:	0.0	HS Total Ret Ho	t: 73.5
Torque: Nm		Drag: IxdeN		Rot Wt: IideN		P/U Wei IrdeN	ight: 258	S/O Wt: kdaN	246		BOP Test:	30	-Jun-02		POB:	120
Last Casi	ing Size:	251	nm	Set At:	4	.404 m	MD		4,402 m	TVO	Shoe Test, kg/r	m):	1861	Leekoff	NO	
Cum Rot	Hrs on Casi	ng:	73	L5 Cum			Since Last Calip	er: .		Vhipstock S	el Q:				кор:	4,110 m
Liner Size	3 :			Set At:			MD			TVD	Liner Top At:				MO	TVD
Mud Ca:				Type:	C. and and a			Semple		WL.	4700	FV.	PV.	24	YP. 7	Get,
WL API		ITHP:		FC(mm) API	Synthetic-I VHTHP:	08980	Solids:	1	% Syn:	its (wm	1789 % Water:		91 cP SWR:	24	MBT.	Pa 7/10 pH:
oz/30min Psm:	——— 	S, volts	4.0	mm Certs		0. Ci:	.0 CaMg:	27.2	ASG:	56.0	Solids % HG/LG	15.5		78/22 24hr Avr	Kg/L 0.00 SOC %:	No cuttings lest 24
Engr Sen	2.6		Material				32,500			4.10			26/1.2	<u> </u>		hours
		2	24 hrs:			4 cm 55	ga dm Novemul		80 ee 5	Ollo bg Lim	•	863 ee	100fb bg Barl	te		
	No bg G-seel			ib bg Mbx-II f	ine		50lb bg Pulpro1			Ollo bg Mic		10 ea 2	51b bg Mbs-II			
Orig Gas:	: 		Max Gar	:	56.70	Conn. G	23.	מין מי	Gas:		Trip CI:		Reme	inta:		
Bit No.	IADC	Size	ļ	Menufacturer	S	erial Nun	nber Typ	•	Jets, No. Size	mm No. Size	TFA, mm²		MD in		MD Out	TVD Out
5 RR2	M322	216		Hycalog		20160	6 RS1	62 2	8.7	4 10.	3 454	1	3,441 m			
									\Box							
meters	Hour	•	WOB, IxlaN	RPM	I-Row	0-Ro	DX	:	Loc	В	G		Cher		?Pull	Cost/meter
964	73.5	50		 -				\dashv				T				\$2,341.80
								$\neg \dagger$	一十		1			Г		
Total Ler	ngth of BHA:	:	283	24 m	BHA Desc	ription:	216mm	RS162 F	Nonica Bit	. PD675 bi	ss unit, PD675 Ex	dension s	ub. PD675 C	ontrol uni		
213mm	NM stats. F	inet sub. Al			X/O. 210m	m stab	15 - 127mm HV								7	
	of BHA - 13.															
Bit Cost		70,000	Row 2		Dies	000	Trip 14 Time,hr		Size.	127	DP Size, mm:	127	Hours On	73.5	Hrs Since Last	Inspection: 73.5
Bit	Line	r, mm	Stro	ke, meters	m³/STK	SPM		liter/mi	_	/el, m/sec	DP AV, m/min	DCAV	m/min Bi	4 HHP	914 Parent ²	Pump HHP
5 RR2	Η.	140	 	0.3556	0.0159	73	+	1158	1-	42.4	48.0	T	1.0	46	526.03	
374.72	†		 	0.3350	0.0139	<u>'</u>		1136	1	72.7	1 400	 			320.03	
	Survey MD		Angi	• (Direction		TVD	1	N/S Coord	inate	E/W C	oordinate		Vertica	l Section, m	DLS, */30m
 -						\vdash		\vdash			†					
l								\dagger			1					-
<u> </u>								+			1					
Hrs.	(From -To)) hh:mm	Code						Operator	s Covering	24 Hours Ending	at Midnig	nt .			
8:30	00:00	- 8:30	23 T	Continue to	o circulate a	and displ	ace 14.9# mud	n open w	ell. Simulat	e 15min co	nnection. Monito	rwell on 1	rip tank - 23b	bis gaine	d while	
L	 		<u> </u>								ce choke and kill	lines with	14.9# mud.			
1:30 3:00	10:00	- 10:00 - 13:00	04 T				No fill on bottom				ing due to lighter	mud in a	YUAS.			
5:30	13:00	- 18:30	01 T								ulate and condition			selow 600	lunits	
4:00	18:30 -	- 22:30	05 T				from 4998m. No	drag.								
1:30	22:30	- 24:00	01 T	Circulate a	nd condition	n mud at	4441m.									
-	 		 													
ļ	 		-	Operations	at 0500hrs	, 7/14: W	Vash and ream t	eck to bot	tom.							
\vdash	 		╁	 												J-11-7-1
<u> </u>	 			<u> </u>												
-	 	•	┼	 			· · · · · · · · · · · · · · · · · · ·									
<u> </u>	 		t^-	 												
<u></u>	Щ	Director		1404=::	Chad was	abr - 1	***********		4 44 45							
	24 hr ummany:	C/e/pece	wew Will	19.5# MUG.	anon inp K	s1108. (Circulate and co	WIDON MU	u at snoë.							
	rojected	TIH. Circ	viete and	t condition m	at TD. E	veluate	forward plan.									
	erations:														A could not	
		I No serie	ents, no i			ghtings n	eported. Held da	dy pre-tou	r & safety r	neetings. F	tOV inspected rise	# & BOP.			Accidents: Safety Rep:	NAR HJ Betrech
<u></u>	Safety Saves:		Vacco :-		- TISE.			Jo-2: 5:	rm Eval Co	<u></u>			Daily Drilling	Cost:		H-L Belesch
<u></u>	Safety saues:	Standby	Vessel is	Daily Tang				Damy ro		-						
Opi	Safety saues:	Standby \$38	,646		ble Cost:		\$3,625		rm Eval Co		\$50,115		Cum Drilling	Cost		\$648,936
Opi	Safety saues: ud Cost: ud Cost	\$38 \$3,12	,646 2,431	Daily Tangi	ble Cost:		\$3,625 \$3,564,412				\$50,115 \$2,275,090		Cum Drilling Total Appr	Cost		\$51,633,897
Opi In Daily Mi Cum Mi	Safety seues: ud Cost ud Cost	\$38 \$3,12	,646 2,431 3.7	Daily Tangi	ble Cost:		\$3,584,412 Fuel.	Cum Fo				0.7	Total Appr:	Cost:	0.4	

300H234320080450

Chevron et al Newburn H-23

Jones / Curren / Alworth

DW Millennium

EL 2359

unty:

Canada

Chev	ron (anad	la Res	our	es			Chev	ron et	al. Ne	wbun	n H-23	3		D	rilling	Activity	Report (meet
Measured	Depth:		5,42	5 m	TVD		,345 m	PSTD:		-	P	roposed h	MD:		6,400 n	Proposi	d TVD:	6,315 m
DOL	56		DFS:	55		Spud Date);	22-May-0	Daily	meters.			3 m	Daily Ro		1.0	HS Total Rot I	
Forque:	8135	Oreg:		Rot Wt			Weight:		3/0 Wt:	25		st BOP 1					P08:	
est Casi		IndeN	8.9	kdaN Set At:				259 MD	kdeN	25	T	VD Shr	oe Test, kg/m		3-Jun-02	Leakoff	,	120
Cum Rot	Hrs on Ca		1 mm		Cum Rot	4,404 Hrs on Cas		Last Caline	r.	4,402 m		k Set (2:			1861	Ш	KOP:	0
iner Size);		8.	Set At:	L			MD		2.5			er Top At:				МО	4,110 m TVD
				Туре:			-		Sample F		- Iw	i_		FV.	P	,	YP.	Gei,
ML API.						hetic-base	1			F		/m²	1789	s/qt	94 cP		Po 7	Pa 7/1
00/30min		HTHP:	3.6	PC(mm mm	APVHTH	P:	0.0	Solids:	27.1	% Syn:		56.5 × V	Water:	15.0	SWR:	79/21	MBT, Kg/L 0.0	рн: 20
Psm:	2.2	ES, volts		55	Carte	CI:	35,000	Ca/Mg:		ASG:	4.10		ids % HG/LG:		26/1.1	24hr Av	g SOC %:	4.72
Engr Sen	rice	2	Materia 24 hrs:	s added	lest	738	on 45 Alm	bg Barte					*****					
	-		124 188.				OG 10. 110	Og Carto										
Orig Gas:			Max Ge	8 :		Con	ı. Ges:		Trip	Gas:		Trip	p CI:		Re	marks:		
		Size	+	Manufac		5.70		Т-		Jets.	mm	+						T
Bit No.	IADC		+	Menuta.		Seriel (Yumber	Туре	<u> </u>	o. Size	No. Siz	•	TFA, mm²		MO In	_	MD Out	TVD Out
5 RR2	M322	216		Hycalo	9	20	608	RS16	2 2	8.7	4	10.3	454		1,441 m	_		ļ
		L,	WOB.			<u> </u>		 		4		-						
meters	Но	urs .	kdeN	RPN	l H	Sow O	-Row	oc.	'	Loc	8		G		Cher		?Pull	Cost/meter
984	82	.00	6.7	8														\$2,510.16
	1,64							Ì										
Total Ler	gth of BH/	\	283.	24 m	ВНА	Descriptio	n:	216mm I	RS162 Hy	calog Bit	PD675	bias unit	L PD675 Exte	ension s	ub, PD675	Control un	<u> </u>	
213mm	NM stab,	Floet sub, a	ARC675, N	RVD, Isa	onic, X/O,	210mm sta	b, 15 - 12	7mm HW0	OP, HE Ja	rs, 5 - 12	7mm H1	MDP.						
			veight belo															
Bit Cost S	Row 1	70,000	Row 2		Rig\$	25,000	Trip Time,hr	14.0	DC S	Size.	127	DP	Size, mm:	127	Hours O	82.5	Hrs Since Las	st Inspection: 82.
Bit	Lin	er, mm	Siro	ke, mete		STK S		ess, KPa	liter/min	Jet \	/el, m/sc	c DP	P AV, m/min	DC AV	, m/min	ви ннр	Bedwer.	Pump HHP
5 RR2		140	1	0.3556	1,	159		12500	nen.	 	34.		400			~		
311112		170	+-	J.3556	 "	,,,,,,	~	12300	962	1	34.8	\dashv	40.0		.0	26	292.08	266
	Survey MD		Angi		Direction	on	TVD		N	/S Coordi	nate	\dashv	E/W Cod	rdinate		Vertica	l Section, m	DLS, */30m
						\dashv						\dashv			\dashv			
						_						_	-					
						-						+						
Hrs.	(From -To	o) hh:mm	Code	Г	L				<u> </u>	Operation	s Cover	ng 24 140	ours Ending at	Midnin				
1:00	00:00	- 1:00		Drillino	ahead fro	om 5422 to	5425m.											
3:30	1:00	- 4:30	01	_		ndition mu												
4:30		- 9:00											indicating we	l is ball	ooning.			
4:30		- 11:00 - 15:30				late and co							in on lower ar	mater 1	im dete 4	ar with here	et ouron	
		13.30	+			shut in pri							- GIIOWER BE	want.			a purit	
1:30	15:30	- 17:00	01 T									_	pressure - no	build u	p.			
0:30	17:00	- 17:30													ilate while	preparing to	repair diverter	:
5:30	17:30 23:00	- 23:00										ring well o	on mini trip ta	ink.				
	23.00	- 24.00	01 T		or urcual	ting up cho	nd at 10 100			er G0560								
			ナー	Since	midnight I	Flow check	well - we	I static.										
				Opera	ions at 05	00 hrs, 7/1	5: Circulat	e and con	lition mud									
	<u> </u>		—	Alera:	laba C=:						0100							
*	ļ		+-	_		nor, CCR, n		-uai appro	vai mom B	JU 11218,	UNSOF	o, 10 ext	tend the 14 da	sy SOP	sest requir	enert until	## THE	
	 -		1-					er, mud flo	wed abov	e the rota	ary, over	flowing th	the rig floor ca	utchmen	ts and spil	ling into the	moonpool.	
													NSOPB at 16					
			\bot	L														
		Dell at	ead to 542	im C:-	ulata and	oodiffee -	wd C*-	na na 4 4 -		, C								
	4 hr nmary:	Critta Militari	IU 342	an. Cat		WINDON R	a. Chan	Se out ave	ar peck	. contin	UE 10 CH	CURSIE.						····
Pro	jected	Circula	te and con	dition m	ud. POOH	to run win	eline logs.											
	rations:																	
	afety sues:						ported. He	eld devily pro	-lour & sa	fety meet	ings. RC	V inspec	cted riser & Bi	OP.			Accidents:	Spill
IS Daily Mu			Vessel is		Hebron Se angible Co				Daily Form	Eval Co	st .				Daily Drillin	o Cost:	Safety Rep:	H-L Balasch
Cum Mu		\$1	5,758		ngible Co		\$10	7,655	Cum Form			\$52	2,914		Cum Drillin			\$736,198
Chevron			48,507				\$3,67	75,693				\$2,37	78,119		Total Appr			\$52,993,566
Bulk Gal	-		6.7	Cement			Fuel,		Bulk	Wt.		Ric	Heeve, m		Pitch.	Roll.		\$79,476,760
m³		2	4.9	m,	-	204.6	<u>.</u>	4413.	8 113		278.9			0.4	deg 0	2 deg	0.2	
Country			Can	eds		Rig:	DW	Milenniun	, luwi:			2343200	080450	Oritting I	repe:		lones / Curran /	Alworth
Field:		Explor	ation			Leese:		EL 2350				of:	Chevro	n et al N	lewbum H	-23	J000:	15-Jul-02

DW Millennium

EL 2359

Canada

Exploration

300H234320060450

Chevron et al Newburn H-23

Jones / Curran / Alworth

		anada	Resc	urce					evron	t al. N	ewbu				Drilling	g Activity I	Report (metric)
Measured	I Depth:			25 m	TV	D:	5,345	PBTD: m				Propos	sed MD:	6,40	Prop 0 m	oeed TVD:	6,315 m
DOL:	58		DFS:	57		Spud	Date:	22-May-	02 Di	ily meter	8:		0 m	Daily Rot Hrs:	0.	HS Total Rot H	
Torque: Nm		Drag: kdaN		Rot Wt:			P/U Weigh kdaN	ıt:	S/O Wt			Last B	OP Test:	30-Jun-0		POB:	123
Last Casi	ng Size:		1 mm	Set At:				MD	NOE! V	4,402		TVO	Shoe Test, kg/n	n³:	Leek	off?	
Cum Rot	Hrs on Cas				Cum Ro		404 m Casing Si	nce Last Calip	er.			tock Se	Q:	18	81	KOP:	
Liner Size):		- 0.	2.5 Set At:				MD		82.5	L	TVD	Liner Top At:			MD	4,110 m TVD
				Тура:					Sample	From:		Wt.	l	FV.	PV,	YP.	Gel
Mud Co: WL API,		UTUO.				nthetic	-based				Pits	kg/m²	1789	s/qt 91	cP 2	P0 6	Pa 7/10
cc/30min	ľ	HTHP:	3.8	mm	APVHT	HP:	2.4	Solids:	26.6	% Sy	n:	56.0	% Water:	17.4 SWR:	78/	MBT, 22 Kg/L 0.0	0 PH:
Psm;	3.2	ES, volts	6	50	Cart:		Ct	000 Ca/Mg:		ASG:		.20	Solids % HG/LC		24hr	Avg SOC %:	No cuttings lest 24
Engr Sen			Materia	is added	last								<u> </u>		J.Z		hrs
		2	24 hrs:				105 sx Ba	arite									
Drig Gas:			Max Ga	18:			Conn. Gas	E	Tr	p Gas:			Trip Ct		Remarks:		
-			 -			8.10				.iei	s, mm				<u> </u>		
Bit No.	MDC	Size		Manufac	turer	ļ s	erial Numbi	er Tyl	×	No. Siz		Size	TFA, mm²	MD In		MD Out	TVD Out
5 RR2	M322	216		Hycaio	g	丄	201608	RS1	62	2 8.7	4	10.3	454	4,441 m			
meters	Hou	ırs	WOB, kdaN	RPM	۱ ۱	-Row	O-Row	Di		Loc		В	G	Cher		?Pull	Cost/meter
984	82.	00															\$2,510.16
					\top												\$2,510.10
Total Len	gth of BHA	:	283	24 m	ВН	A Desc	ription:	216ma	DS162	Lhucalor		D875 h	ine unit PD67	5 Extension su	- DD875 ('a steel wall	
213mm	NM etah	Float eu			leonic	Y/O 2	10mm etc	ab, 15 - 127r						S EXIGNSION SU	6, PU6/5 C	AORIFOI UNIK,	
***			; weight b				100001 54	10, 13 - 12/1	IIII FIVE	F, NE J	a13, J	12/11	III AVUP.				
Bit Cost		70,000	Day 2	olow jan	Rig			rip 14		Size,		27	DP Size, mm:	127 Hours	On 82	5 Hrs Since Las	Inspection: 82.5
S Bit	Line	-			///		1 Tim	e,hr		1				Ja:	3:		
		er, mm	Siro	ke, meter	3 11	P/STK	SPM	Press, KPa	liter/m	n Je	t Vel, m	VSec	OP AV, nymin	DC AV, m/min	Bit HHP	8HHP/mm²	Pump HHP
5 RR2	1	40	 -).3556	- 10	.0159			╄				ļ				
			_L					<u> </u>	 								
	Survey MD)	Ang	•	Direc	tion		TVD	<u> </u>	N/S Coo	rdinate		E/W Co	ordinate	Ver	ical Section, m	DLS, 9/30m
									<u> </u>								
									1								
				لسبب					<u> </u>				<u> </u>				
Hrs.	(From -To		Code							Operation	ons Cov	ering 24	Hours Ending a	t Midnight		^	
5:00	00:00	- 5:00		Contin	ue to pu	ump ou	t of hole f	/ 5115m to 4	353m @	15 spm	w/ 24	95 kPa				··	
1:00		- 6:00 - 8:00					n. Well sta			45		5 t-D-					
1:30	8:00	- 9:30						/ 4353m - 40 w/ 362 psi.					31 kPa				
2:00	9:30	- 11:30		+				/ 4064m - 37					-				
8:00	11:30	- 19:30	05	 				1351m. Hole								.	
1:30	19:30	- 21:00	05	Flow o	heck w	ell @ 1	351m (BH	A below BO	P's) - sta	tic 15 m	ins. Co	ontinue	POOH (wet st	ring) from 1351	m - 910m	(2 stands above	BOP's).
0:30	21:00	- 21:30		Flush	choke &	kill lin	es w/ 1,78	8 kg/m³ mu	d & take	CLF's. C	lose E	SR's &	monitor well u	p choke line to	mini-trip ta	ink.	
1:00	21:30	- 22:30	01	 						down dri	llpipe (g 146	spm & boost w	/ 200 spm.			
1:30	22:30	- 24:00	05					ini-trip tank - static. Pun		l alua P		- 800	N to BUA				· · · · · · · · · · · · · · · · · · ·
				Оран	001130	. now c	TIECK WEH	- static. Full	10 4.0 III	siug a	CONTRACT.	16 1-00	on to one.				
			1														
								· · · · · · · · · · · · · · · · · · ·									
				<u> </u>												., 	
			+	Oner	tions @	0500	re 7/10-	RIH w/1 ac-	un #1: ^	B-OBI4	J DT.	NI -CA	AR Well statio				
			+	Spera	u	, 0.0001	3, 1/10:	an w/ Log r	UII #1. U	UDIMI	-2514	>.4E-ON	MR. Well station	.			
			1														
	4 hr	РООН	to log.														
Sur	nmary:	\perp															
	ected	Continu	e logging	well.													
		No are	dente '-	oidorto 1	Ma a-u ·	inn etri										Accidents:	
	afety sues:	-	v Vessel is I				ungs report	ed. Held daily	pre-tour	satety n	neeting					Safety Rep:	NAR U. Balasch
Daily Mu	d Cost:				ngible C			P10 700	Daily Fo	rm Eval (Cost:		\$60.04.1	Daily Dr	iling Cost:	1	H-L Balasch
Cum Muc	i Cost:		85 000	Cum Ta	ngible Ci	ost		\$10,793	Cum Fo	nn Eval C	Cost:		\$69,014	Cum Dri	Ming Cost		\$646,177
Chevron	% :		65,900	<u> </u>				3,761,427	+			3	2,496,197	Total Ap			\$54,351,992
Bulk Gel,			37	Cement			Fuel			lk Wt.			Rig Heeve, m	Pitch,	Roll,		\$79,476,760
m³ Country:		2	4.9	m³		204.6	Róa:	4,34	IUV			6.7		0.8 deg Onilling Reps:	0.5 deg	0.3	
Field:			Can	ada		Loos		OW Millenniu	m			0H234: Well:	320060450	L		Jones / Curran /	
		Ежрю	ration				-	EL 235	9				Chevro	n et al Newbun	n H-23	ļ	17-Jul-02

Jones / Curran / Bruton
Date: 17-Jul-02

Messure		anaga	a Reso	urce:						vror	n et	al. No	awbı	um H-				Dri		Activi	ty R	epor	t (metric)
Measure DOL:	d Depth;		5,42 DFS:	25 m	TVD:		5,345	m	PBTD:		12.1			Propos	sed MD:			400 m	Propose	od TVD:		6,3	315 m
Torque:	59	Drag:		58 Rot Wt:		1	id Date:		22-May-0	02	1	y meters:	<u>:</u>	E-14.6	0 m	De	eily Rot Hrs:		0.0	HS Total	Rot Hrs:	:	82.5
Nm		kdaN		kdaN			P/U Weigh kdeN	16:		S/O V kdaN				1	BOP Test:		30-Jun-	-02		POB:			128
Last Cas			i1 mm	Set At:			4,404 m		MD		_	4,402			Shoe Test, kg/n	/m³:	1	861	Leekoff	;	NO		-
	Hrs on Ca	sing:	8;	2.5	Cum Rot i	rins or	n Casing Sin	nce La		ir.		32.5	Whipe	stock Set		_				KOP:		4.	110 m
Liner Siz				Set At:		_			MD	_				TVD	Liner Top At	_				MD			TVD
Mud Co:	M-I			Туре:	Syr	theti	c-based			Samp	nple Fro		Pits	Wt,	1789	FV s/q		PV. cP		YP.	•	Gel, Pa	740
WL API, cc/30min		HTHP:		FC(mm)) APVHTH				Solids:			% Syn			% Water:		SWR:		22	MBT.	8	Pa pH:	7/10
Psm:		ES, volts		· ·	Carb:	_	Ct: 2.4		Ca/Mg:	20	6.8	ASG:		56.0	Solids % HG/LG		17.2		78/22 24hr Av	Kg/L g SOC %:	0.00	No cuttin	ngs lest 24
Engr Ser	2.3 rvice	<u></u>	Material	sis added !	last		37,	,000	Щ_			Щ.		1.20	<u> </u>		26.	4/0.1	Ι				ns .
		2	24 hrs:					—					—										
Drig Gas	k:		Max Ga	as:			Conn. Gas	4 :		—	Trio C	Gas;			Trip Ct:	_		Rema	-de				
			+-				<u> </u>				<u> </u>		ts, mm		11.00.	- -			Mas.				
Bit No.	IADC	Size	'	Manufact	turer	s	Serial Numbe	er	Туре	•	No			Size	TFA, mm²	\perp	MD In	١		MD Out	\perp	TVD	Out
5 RR2	M322	216		Hycalog	<u>.g</u>	\perp	201608		RS16	62	2	8.7	4	10.3	454		4,441	m					
		Щ,		 -		Щ.					Ĺ		Ĺ			\perp							
meters	Ho	ours	WOB, kdaN	RPM	i I-F	Row	O-Row		DC		L	Loc	Ī	В	G	L	Char			?Pull		Cost/	meter
984	82	.00	'			1	1		NO	, _		A		x	1	T	NO			TD		\$2,51	10.16
			'													T			\top		\neg		<u></u>
Total Lan	ngth of BHA	c .			ВНА	Desc	cription:									_			*****				
											_		_			_							
						_		_			_		_										
Bit Cost \$	Row 1	70,000	Row 2		Rig\$	25.		Trip me,hr	14.0		DC Si			0	DP Size, mm:			urs On ars:	82.5	Hrs Since	e Last In	spection	: 82.5
Bit	Lin	er, mm	Stro	oke, meter:		VSTK		_	ess, KPa	_	r/min	_	t Vel, m	//sec	DP AV, m/min	n Dr		$\overline{}$	it HHP	ВННР	/mm²	Pun	mp HHP
5 RR2		140	+ 7	0.3556	0.0	0159						 				T		+				†	
			T			-										十		\dagger				<u> </u>	
	Survey MC	5	Angi	ple	Directio	,on		TVD		\vdash	N/	VS Coord	dinate		E/W Co	oord	inate	+-	Vertica/	Section, n	——— n	DLS	S, °/30m
			ī	\neg	<u> </u>	_				\vdash					 	<u> </u>		+				+==	-
			i	1						\vdash			_		 	_		+-				\vdash	
				\rightarrow			 								 	_		+-				\vdash	
Hrs.	(From -To	o) hh:mm	Code	Г				_		<u> </u>			ns Co	vering 2/	4 Hours Ending at	at Mi	idnight					Щ	
2:00	00:00	- 2:00	05	Break	down Pc	werd	drive BHA i	in sec	ctions. M	Aove t					tools off line us			unted b	reakout	machine.	Grade	hit.	
6:00	2:00	- 8:00	25	1											T personnel. R/	_			Number.	Higun	Giaco	DN.	
	<u> </u>		'	RIH w/	/ log run #	#1: G	SR-OBMI-C	CNL-L	LDT-CMF	R. Lo	og dov	wn. Go	ot dow	vn to 540	107 m. Unable b				j.				
14:00	8:00	- 22:00					407 m - 44						-CNL-	LDT.									
2:00	22:00	- 24:00	25 0 25				down to 54						Swah	in 1 5.	2 hhi								
			+-	+											ery swollen (to a	app		twice	normal s	ize) soft	and SD	onav.	
						_		<u> </u>			75 -				.,	-,		-		120/1	d	, e, .	
			 _'			_																	
	<u> </u>		'	↓												_							
			+-'	├ ─												—							
\vdash	 		+-'	├		—				—						_							
			+-	 											· · · · · · · · · · · · · · · · · · ·								
								—															
			\bot													_							
			<u>'</u>	 																			
	 		 '	Operat	itions @ (J500H)hrs, 7/19: 1	TIH fe	or wiper	trip.													
	<u> </u>		+'	 																			
 ;	24 hr	Finish	POOH w/	BHA. H	old Pre-ir	ob sa	fetv meetir	na for	wireline	looc	ning.	Wirelin		nin #1:	GR-OBMI-CNL	4L-Lf	OT-CMR.	Inable	to get by	-low 5407	7-70		
	mmary:					_			*****		" 3		7.00				-		10 90	30W 0-10.	111.		
	ojected	TIH to	make clea	anout / w	riper trip.	_				_	_					_							
	rations:	+								_	_		_			_							
	ialety isues:						htings reporte	ted. H	ield daily s	pre-tov	ur & si	afety m	eeting	j.						Accidents:		NA	
Daily Mu			y Vessel is t		lebron See angible Cos					Daily	Form	n Eval Co	nst:			_	lDaily (Orilling C	1	Safety Rep	×	H-L Ba	slasch
Cum Muc			7,600		ingible Cos			\$15,	,163			Eval Co			\$66,139			Onling C				692,62	7
Chevron		\$3,1	73,500	-	-900 000	_		<u> 3,776</u>	6,590	-	70111			<u>\$</u> ;	2,562,335		Total A				\$5	5,044,6	<i>i</i> 19
Bulk Gel,			37	Cement,		_	IE.			Щ.	Bulk V	186			Die Heere en						\$7	9,476,7	60
m³ Country:	_	2	4.9	m³		204.6		· —	4,342	2.7	m³		27	6.7	Rig Heave, m		Pitch, 0.8 deg	0.5	Roll, deg	0.3			
			Cana	ada				DW N	Millennium	<u>. </u>	UM:				320060450	Drill	ling Reps:		Jo	nes / Cun	ran / Br	uton	
Field:		Explora	ation	-		Loan	*		EL 2359	9				Well:	Chevro	on el	t al Newbu	m H-2	3	Date:	1	8-Jul-02	2

Chevron et al Newburn H-23

18-Jul-02

	ron Ca	anada	Resc	urce				vron e	t al. N	ewb						vity R	eport (metric)
Measure	d Depth:			25 m	TVD:	5,345	PBTD: m				Propos	sed MD:	6,40	O m	posed TVD:		6,315 m
DOL:	60		DFS:	59	Sp	ud Date:	22-May-	Dai	y meter	S :		0 m	Daily Rot Hrs:		.0 HS Tot	al Rot Hrs:	
Torque: Nm		Drag: kdaN		Rot Wt: kdaN	167	P/U Weigh		S/O Wt: kdaN		65	Last B	OP Test:	20 1		POB:		
Last Cas	ing Size:		4	Set At:	107	kdaN	MD	KOSIN			TVD	Shoe Test, kg/r	30-Jun-0	Las	koff?		118
Cum Rot	Hrs on Cas		1 mm		Cum Rot Hrs	4,404 m on Casing Si	nce Last Calip	ec.	4,402		stock Se	I	18	61	IKOP:	NO	
Liner Siz	e:		8:	2.5 Set At:			MD		82.5		TVD	Liner Top At:			MD		4,110 m
				Туре:				Sample f					154	·			TVD
Mud Co:				туре.	Synthet	ic-based		Sample	-rom:	Pits	Wt,	1789	FV. s/qt 98	PV. cP 2	YP.	8	Gel, Pa 7/10
WL API, cc/30min	ľ	ITHP:	3.2	FC(mm)	APVHTHP:	2.4	Solids:	26.8	% Sy	n:	56.0	% Water:	SWR:		MBT.		pH:
Psm:		S, volts			Carts:	Ct:	Ca/Mg:	20.8	ASG:		•	Solids % HG/L		24h	/22 Kg/L r Avg SOC 9	0.00 %:	No cuttings last 24
Engr Ser	2.3 vice			60 is added	iast	37,	,000			4	.20		26.4	/ 0.1			hrs
		2	24 hrs:														
04- 0			1														
Drig Gas	•		Max G	as: 	64.80	Conn. Gas	.	Trip	Gas:			Trip Ct		Remarks:			
Bit No.	IADC	Size		Manufaci	turer	Serial Numbe	вг Тур	• ,	Jet Vo. Siz	s, mm	Size	TFA, mm²	MD to		MD Out		TVD Out
6 RR	117	216		Hughe	.	J93DH	MX		1	0	0.0	481	E 425				
01111	1	210		riogne	•	Jason	MA	' 3	14.3	۳	1 0.0	401	5,425 m	' 			
meters	Hou	_	WOB.	RPM	I-Row	O-Row	DC	$\neg\vdash$		\vdash	<u>. </u>	G					
-			kdaN	RPM	PROW	- C-ROW	1 00		Loc	_	В	-	Cher		?Pull		Cost/meter
0	<u> </u>			<u> </u>		ļ				<u> </u>							
Total Las	ogth of BHA:			<u> </u>						<u> </u>		<u> </u>					
TOTAL CO.	gui or bria.		843	.61 m	BHA De	scription:	216 mr	n mill too	th bit, 2	13 mn	n Near-	bit Stabilizer (E	BFF), 1 - 127 m	m HWDP	1 - 213 St	abilizer,	
20 - 12	7 mm HW(OP,127 n	nm drilling	jars, 5	127 mm H\	VDP											
Bit Cost \$	Row 1	0	Row 2		Rig\$ 2		rip 14. ne,hr	O DC	Size.	1	127	DP Size, mm:	127 Hour		2.5 Hrs Si	nce Last In	spection: 82.5
Bit	Line	r, mm	Stro	ke, meter	s m³/STI		Press, KPa	liter/min		t Vel, n	n/sec	DP AV, m/min	DC AV, m/min	Bit HHF	> вн	HP/mm²	Pump HHP
6 RR	1	40		0.3556	0.0159		·	 	+-				T				1
****	<u>.</u>			0.3330	0.013	'		\vdash	+								
	Survey MD		Ang	in 1	Direction	+	TVD	 	WS Coo	rdinate	-	EMC	pordinate	. Va	rtical Section		DIG Pro
 				_	Diddo.	+		 				- DW 0	A COLORIGIE		TICAL SECTION	1, 111	DLS, 9/30m
 						+		-									1
 -												ļ		ļ			
<u> </u>	T			اـــــــــــــــــــــــــــــــــــــ				<u> </u>				<u> </u>		L			
Hrs.	(From -To		Code	<u> </u>					Operatio	ons Co	vering 24	4 Hours Ending a	x Midnight				
2:30 0:30	2:30	- 2:30 - 3:00			gging tools											 	
1:00	3:00						discuss char WDP, stabiliz				4 5 1111	ne .					
5:00	 	9:00		 			stands. Boo				3 5 1144	UP					
3:30	9:00										st w/ 10	6490 kPa). Ma	x gas 2974 uni	s. Max mu	ed cut to 17	716 kg/m³	
5:30	12:30	- 18:00	05				Fill DP every					······································					<u> </u>
6:00	18:00	- 24:00	01	Circula	ite. Max gas	6476 units,	max mud cu	t to 1692	kg/m³.			····					
	ļ			<u> </u>													
				<u> </u>													
<u> </u>	 			 													
	-		-	\vdash													
	l		\top	 													
				1													
<u> </u>	ļ			Opera	tions @ 050	Ohrs, 7/20:	Washing in o	pen hole	@ 482	5 m							
	 		-	 —													
<u> </u>	14.5-	LIDIo	ning test	bold a	a iah ====	- TILL (-:	andistration	- C'	-1- 0	2700			404				
	24 hr mmary:	20.00	Min. id. 1008	, noid pi	e-joo meetir	y, intorc	onardoning to	np. Circul	ate @ 2	2100 F	n and t	hen again @ 4	4U4M.				
Pn	pjected	Contin	ue conditi	onina tri	D.												
	erations:			٠٠١													
	Safety	No acci	dents, no ir	cidents.	No pollution si	ghtings report	ted. Held daily	pre-tour &	safety n	neeting	s. Held	pit drill; 49 secon	ds.		Accider	rts:	NAR
L	sues:	Standby	y Vessel is												Safety F	Rep:	H-L Balasch
Daily Mu		\$1	3,980	Daily Ta	ngible Cost:		\$7,995	Daily For	m Eval C	Cost		\$44,639		illing Cost:			\$592,051
Cum Mu			87,480	Cum Ta	ngible Cost:	2	3,784,585	Cum For	n Eval C	ost:		2,606,974	Cum Dr	illing Cost			5,636,670
Chevron	% :		37				,						Total A	pr:			79,476,760
Bulk Gel			4.9	Cement.		Fuel			WL.			Rig Heave, m	Pitch,	Roll			
Country:					20-	Rig	4,27	LW	l:		30.1	220080450	0.8 deg Drilling Reps:	0.5 deg	0.3		
Field:		E	Car	1403	Le	190:	OW Millenniu			30	0H234 Well:	320060450	<u> </u>	- u ~~	Jones / C	urran / B	
		Explor	auUR				EL 235	3			1	Unevro	in et al Newbur	·· IT-23	_ t		19-Jul-02

Measure	ron Ca	anaua	Resc	urce						vron	et al.	Newl	ourn H-				Drillin	g Activi	ty R	eport	(metric)
	d Depth:			25 m	īV	'D:	5,34	5 m	PBTO:				Propo	sed MD:		6,400	m Prop	osed TVD:		6.3	315 m
DOL:	61		DFS:	60		Spuc	d Date:	2	22-May-(02	Daily me	ters:		0 m	Daily Ro	t Hrs:	0.	HS Total	Rot Hrs:	:	12.5
Torque:		Drag: kdaN		Rot Wt:		167	P/U We			S/O W	Vt:	400	Last B	OP Test:				POB:			
Nm Last Cas	ing Size:			kdeN Set At:			kdaN		MD MD	kdeN		165	TVO	Shoe Test, kg/r		-Jun-02	Logi	<u></u>			118
	Hrs on Cas	25°	mm	10	Cum Ro		,404 m	Since I	act Calipe		4,4	02 m	petock Se			186	1		NO		
Liner Size			82	2.5 Set At:						•··	82.5			_				KOP:		4,1	10 m
									MD				TVD	Liner Top At:				MD			TVD
Mud Co:	M-I			Type:	Sv	mthetic	-based			Sampl	le From:	Pits	Wt,	1789	FV. s/qt	106		YP.		Gel, Pa	
WL API, cc/30min		ITHP:		FC(mm)	APVHT	HP:			Solids:	'		Syn:		% Water:		SWR:	P 24	MBT,	8	pH:	7/10
Psm:		S, volts	3.6		Carb:		Ct:	4	Ca/Mg:	26.	.6 AS	<u> </u>	56.0	Salida W LIGO	17.4			22 Kg/L	0.00	<u> </u>	
	2.8	-0, 1013		20				6,000	Ca/Mg.		^	G:	4.20	Solids % HG/L	خ:	26.4 /	0.2 Z4hr	Avg SOC %:	-	No cutting hr	
Engr Ser	vice	2	Materia 24 hrs:	is added i	last		190 sx	harite													
Drig Gas	:		Max Ga	is:			Conn. G	88:		h	Trip Gas:		·	Trip Ct:		F	Remarks:				
						6.70	l			\dashv		Jets, mr									
Bit No.	MDC	Size		Manufact	urer	S	erial Num	ber	Тур	•			o. Size	TFA, mm²		VID In		MD Out	ı	TVD	Out
6 RR	117	216		Hughes	5		J93DI	,	мхс	:1	3 14	.3 0	0.0	481	5.	425 m					
						Т					7								\neg		
meters	Hou	гз	WOB,	RPM	1	-Row	O-Ro		DC	. +	Loc	_	В	G	 	Char			\dashv		
<u> </u>			kdaN				0.110			-			<u> </u>			C168		?Pull	_	Cost/n	neter
0							ļ			_		4		<u> </u>	<u> </u>						
7				<u> </u>					<u> </u>						<u> </u>						
l otal Len	igth of BHA:		843.	61 m	8H	A Desc	ription:		216 mm	n mill to	ooth bit,	213 m	m Near-	bit Stabilizer (E	3FF), 1 -	127 mm	HWDP.	1 - 213 Stat	ilizer.		
20 - 12	7 mm HW(DP,127 m	m drilling	jars, 5 -	127 m	m HW	DP														
Bit Cost	Row 1	0	Row 2		Rig	\$ 25,	000	Trip	14.0		OC Size.		127	DP Size, mm;	127	Hours	On an	5 Jun 6:			
\$ 024	11		+-		/hr		,	ime,hr		<u> </u>	nm:			ļ		Jars		5 PHS SINCE	e cast in	spection:	82.5
Bit	Line	r, mm	Stro	ke, meter:	s m	P/STK	SPM	Pre	ss, KPa	liter/r	min	Jet Vel,	m/sec	DP AV, m/min	DC AV.	m/min	Bit HHP	ВННР	/mm²	Pum	p HHP
6 RR	1	40		.3556	0.	.0159									L			1			
								1												T	
	Survey MD		Ang	•	Direc	tion		TVD			N/S C	oordinat		E/W Co	ordinate		Vert	ical Section, r	n	DLS.	, °/30m
										T										 	
							-			_						\dashv				┼─	
 							 			 						-+				┼	
			1.				L	-		L										<u> </u>	
Hrs.	(From -To)		Code								Opera	tions C	overing 24	Hours Ending a	t Midnight						
2:30	00:00		01	Circula	te @ 44	404m (@ 40 sp	m													
4:00	2:30	6:30	04				13m @														
12:00 2:00	6:30 - 18:30 -		01						gas 33		ts. Max	mud c	ut 13.8 p	pg							
3:30	20:30		04						ted slug												
0.00	20.50	24.00	+-"-	Circuia	re cg 3	14/m.	max gas	3300	units. M	ax mu	id cut 14	4.3 ppg						····			
			+	<u> </u>																	
			+-																		
			-	<u> </u>																	
			 																		
			1																		
 				Operat	tions @	05001	hrs, 7/21	: Circu	lating @	5407r	m.										
				L																	
-		T		<u> </u>																	
	4 hr nmary:	Continu	e staging	into hok	e makir	ng cond	ditioning	trip.													
		C: :		- dia																	
	jected rations:	Circulat	e and cor	idition pr	nor to P	HOO	to log.														
		No social	ante '-	aideata A	la acti		*		-14 / "									JAoridani-			
	afety sues:		ents, no in Vessel is t				ungs rep	ATBO. H	ero daily (pre-tour	a safety	meetin	gs.					Accidents: Safety Rep		NA	
Daily Muc	Cost:			Daily Tan					-	Daily F	orm Eva	Cost			In.	aily Driff	ng Cost	Sandty Res		H-L Bal	lasch
Cum Muc		\$16	,540	Cum Tan				\$7,9	95					\$23,220					\$	563,940	
Chevron		\$3,20	4,019					\$3,792	2,580	Jun P	om Eva	- COST	S:	2,630,194		um Driffi			\$5	6,200,61	10
Bulk Get			17													otal Appr			\$7	9,476,76	50
m ³		24	.9	Cement, m ³		204.6	Fu 5 m ³		4,271		talk Wt.	1	60.1	Rig Heeve, m		itch. deg (Roll, 0.5 deg	0.3			
Country:			Can	eda			Rig		lillenniur	117	WI:			20060450	Drilling Re			Jones / Cun			\neg
Field:		Explora				Local	-						Well:		ما المفعرة		H 22	Dete:			
		_+							EL 2359	,			1	CHENIO	n et al Ne	THUUM:	723		2	:0-Jul-02	<u> </u>

Measure		anauc	Resc	urce					n et a	i. Nev	wburn				Drillir	ig Activi	ty Re	port	(metric)
	d Depth:			25 m	TVD:	5,345	PBTD:				Pro	posed Mi	ID:	6,40	Om Pro	posed TVD:		6.3	15 m
DOL:	62		DFS:	61	Sp	ud Date:	22-May	-n2	Daily m	laters:			0 m	Daily Rot Hrs:		.0 HS Total	Rot Hrs:		
Torque:		Orag:		Rot Wt:		P/U Weig	ht:	\$/0				BOP Te				POB:			2.5
Nm Last Cas	ion Size:	kdaN		kdaN Set At:	167	kdaN	167 MD	kdel	N	165				30-Jun-0				1	18
			1 mm			4,404 m			4,	402 m	ı TVI	Shoe	e Test, kg/m	18	61	koff?	NO		
Cum Rot	Hrs on Ca	sing:	8:	2.5	Cum Rot Hrs	on Casing 9	ince Last Cali	per:	82.	5 4	Vhipstock	Set @:				KOP:		41	10 m
Liner Siz	æ			Set At:			MD			×1_	TVI	Liner	r Top At:			MO			TVD
				Туре:				Sem	npie Fron	n-	lian.	ــــــــــــــــــــــــــــــــــــــ		FV.	IOV.	Ivo		10-1	
Mud Co:				,,,,,,	Synthe	tic-based					Wt.	,	1789	s/qt 114	PV.	YP. 29 Pa	5	Gel, Pa	5/10
WL API, cc/30min		HTHP:			APVHTHP:		Solids:			6 Syn:		% Wa	ater:	SWR:		MBT,		pH:	
Psm:		ES, volts	3.2	mm	Cerb:	1.6 Ct	Ca/Mg		6.6	SG:	56		s % HG/LG	17.4		/22 Kg/L	0.00		
	3.2			40			5,000		r		4.20	Suid	AS AS MOSTED	26.4	/0.2	r Avg SOC %:	·	no cumng na	s Inst 24
Engr Ser	vice	2	Materia 24 hrs:	is added	ast	225 sx b				DE	Lima			0.4					
			12.4.1113.			223 34 0	-011/0			85 sx	Carre			8 drums Nova	imur				
Drig Gas	,		Max Ga			Conn. Ga			IT C-			Trans	<u>~</u>						
	•			·•.	67.10	Cont. Ga			Trip Ga	rs.		Trip (Cr.		Remarks:				
Bit No.	MDC	Size		Manufact	urer	Serial Numb	per Ty	708	Ī.,	Jets,		TF	FA, mm³	MD In		MD Out		TVD	<u> </u>
									T	Size	No. Size	+					\dashv		
6 RR	117	216		Hughe:	5	J93DH	MX	C1	3 1	14.3	0 0	<u> </u>	481	5,425 m					
meters	Но	urs	WOB, kdaN	RPM	I-Row	O-Row	, D	c	Loc		В		G	Char		?Pull		Cost/n	Nater .
			- NOGS 1			+			├	+									
<u> </u>									<u> </u>	_									
				<u> </u>															
Total Len	igth of BHA	c .	257.	11 m	BHA De	scription:	216 m	m mitt	l tooth b	it 213	3 mm Ne	er-bit Sta	ahilizer (w	/ float) 1 - 12	7 mm HW	OP, 1 - 213 SI	ahilizar		
20 - 12	7 mm HW	DD deillie	ng jars, 5 -		LIMPR					,				, nout, 1 - 12.		51 , 1-210 01	aumzer	·	
		Jr, gridir	·y Jai 5, 3 ·	147 mm	AVVUP														
Bit Cost	Row 1		Row 2		Diet		Ť-i-		DC Size			Inn e	V==						
\$		0			Rig\$ 2		Trip 14 me,hr	1.0	mm:	. ,	127	1053	Size, mm:	127 Hours		2.5 Hrs Since	Last In:	spection:	82.5
Bit	Lin	er, mm	Stro	ke, meten	s m³/STI	SPM	Press, KPa	lite	r/min	Jet V	/el, m/sec	DP A	AV, m/min	DC AV, m/min	Bit HHI	ВННР	mm²	Pum	нне
600			1				 	+-	-+		-	+-							
6 RR		140		0.3556	0.0159	'	 	+-							<u> </u>				
<u> </u>	L				i		<u> </u>	┸-				Т.							
	Survey Mi	,	Ang	le	Direction	1	TVD		N/S	Coordir	nate	1	E/W Cod	ordinate	Ve	rtical Section, n	,	DLS,	°/30m
								\top											
-						 	-	╁				+-							
						ļ		╄-				-							
												1							
Hrs.	(From -T) hh:mm	Code	l					Ope	erations	Covering	24 Hours	rs Ending at	Midnight					
4:00	00:00	- 4:00	01	Continu	ue to circula	te @ 5147	m @ 38 som	w/ 55	00 kPa	Maxir	mum nas	6760	inite: may	mud cut to 16	56 ko/m³				
2:30	4:00	- 6:30	04													o TD @ 5425			
12:00	6:30	- 18:30	01				Pa. Maximu								ii. Wasii i	0 10 @ 3423	111.		
1:30	18:30	- 20:00	24				ip tank. Gain					-							
4:00	20:00	- 24:00					ack 1 stand			<u> </u>		a hime	un @ 540	1 m					
			+	0000	10 10 11111011		OCK 7 Starro	01 01	and 001		CICCIBII	g ouns	up (gr 340	1 111.					
			+	 															
			+-	 															
			┿																
			+-	<u> </u>															
			+-	 															
-	 			 -															
<u> </u>				<u> </u>															
<u> </u>																			
 				 															
 				ļ															
			-	<u> </u>															
				Operat	tions @ 050	Ohrs, 7/22:	Pumping ou	t of op	en hole	@ 50	90m.								
لــــــا																			
	4 hr	Finish:	staging in	hole and	circulating	hole clean.													
Sur	nmary:																		
	ejected	Pump	out of hole	in prepa	ration to log	}-										· · · · · · · · · · · · · · · · · · ·			
000	rations:																		
S	afety	No accid	dents, no in	cidents. N	lo pollution sig	htings repor	ted. Held daily	pre-to	ur & safe	sty mee	tings.					Accidents:		NAI	,—
	sues:						bandon ship o			-		·				Safety Rep	:	H-L Bal	
Daily Mu	Cost				gible Cost		*****		Form Ev	val Cos	t			Daily Dr	lling Cost				
Cum Muc	i Cost:		2,215	Cum Ten	gible Cost		\$7,995	1	Form Ev			-\$48,6	636		fing Cost			506,339	
Chevron		\$3,2	26,234				3,800,575	'''تــــــــــــــــــــــــــــــــــ	. J EV			\$2 ,581,	,558				\$5	3,706,94	9
L			37					上						Total Ap	-		\$79	9,476,76	ю
Bulk Gel,		2.	4.9	Cement,	204	Fue	4,18		Bulk Wt,		351.4	Rig He	eeve, m	Pitch,	Rot.				
m³ Country:				<u>.n</u>	204	Rig:			m³ UWI:				K	0.3 deg Onlling Reps:	0.2 deg	0.2			
Field:			Can	ada	Loc	1	DW Millennia	m	L		300H2:	432006	50450			Jones / Cun Date:	an / Br	uton	
		Explor	ation				EL 235	9					Chevron	et al Newburi	H-23		2	1-Jul-02	

	vron C	anad	a Res	ource						n et al.	New	oum H	-23			Drilling	Activity	Report (metric
Meesure	d Depth:			425 m	TV		5,345 r	PBTD:				Propo	sed MD:		6,400	Propos	eed TVD:	
OOL:	63		DFS:	62		Spu	d Date:	22-May	-02	Daily met	iters:		0 m	Daily F	Rot Hrs:		HS Total Rot	6,315 m
Torque: Nm		Drag:	<u> </u>	Rot Wt	t		P/U Weight		S/O \			Lest B	OP Test:	1		0.0	POB:	82.5
	ing Size:	kdaN		kdaN Set At:	:		kdaN	MD	kdaN			TVD	Ton Tom but		0-Jun-02			124
	t Hrs on Car		1 mm				4,404 m	nce Last Calip		4,40	02 m	pstock Se	Shoe Test, kg/i	m":	1861	1 Leekof	N	ю
Liner Siz				82.5 Set At:			11 (See 1) 5)er.	82.5			_				KOP:	4,110 m
<u> </u>								MD				TVD	Liner Top At:				MD	1/0
Mud Co:	M-I			Type:	Sv	ntheti	c-based		Same	ple From:	Pits	Wt,	1789	FV.		°V,	YP.	Gel,
WL API, cc/30min		HTHP:			m) APVHTH	IP:		Solids:			Syn:		% Water:]**·¢	117 C	P 26	MBT.	6 Pa 5/10 pH:
Psm:		ES, volts	3.5	mm	Carb:		2.4 Ct:	Ca/Mg:		6.9 AS	· C.	55.0		18.1	<u> </u>		4 Kg/L 0.	00
Engr Ser	4.0			420	1		35,0		·		,G.	4.20	SOROS NI FIGURE	:ف	26.3 / 0	0.3 Z4nr A	wg SOC %:	No cuttings lest 24 hrs
L.19. J.	···-	2	24 hrs	rials added s:) less		15 sx lime			10	drum N	ovath <u>in</u>						
Drig Gas	:		Max C	i 8 5:	;	2.60	Conn. Gas:			Trip Gas:	:		Trip Ct		R	lemerks:		
Bit No.	IADC	Size	\top	Manufa		_	Serial Number	r Ty			Jets, mr		754 200	1				T
 	-		+-			+		' '	<u>-</u>	No. S	Size N	o. Size	TFA, mm²	ļ	MD in		MD Out	TVD Out
6 RR	117	216		Hugh	es	+	J93DH	MX	C1	3 14	4.3 0	0.0	481	<u> </u>	5,425 m		5,425 m	5,345 m
<u> </u>			WOR			丄		-		\perp				<u> </u>	5,425 m			
meters	Hou	ırs	WOB, kdaN	RPN	M H	-Row	O-Row	D	c	Loc	-	8	G		Char		?Pull	Cost/meter
0	<u> </u>			40		2	1	В	T	A	\top	E			NO	\dashv	LOG	-
				1						<u> </u>	+		 	 	- NO	_	LUG	
Total Ler	ngth of BHA		25	7.11 m	8H/	A Desc	cription:	216 =		tacth his		- **	1 2 5 - 1 - 1					<u> </u>
20 - 12	7 mm HWI	no dellin			- UNANDE			210 00	M mm	toom un,	, 213 m	m Near-	bit Stabilizer (v	v/ float).	, 1 - 127 n	nm HWDP.	, 1 - 213 Stabil	lizer.
20- ,_	/ 1000 1177	DP, Griiii	ig jars, o	- 127 m	M HWUF	' —												
Bit Cost	Row 1	0	Row	2	Rig	3 25	000 Tri	rin	- 1	DC Size,			DP Size, mm:		· · · · · · · ·		, 	
	<u> </u>				/hr	, ₂₀ ,	,000 Time	e,hr 14.		mm:		127	Dr 3426, 11111.	127	Hours C Jars:	^{On} 82.5	Hrs Since Las	st Inspection: 82.5
Bit	Line	er, mm	Str	roke, mete	ars m³	P/STK	SPM	Press, KPa	liter/	r/min .	Jet Vel,	m/sec	DP AV, m/min	DC AV	, m/min	Bit HHP	BHHP/mm ²	Pump HHP
6 RR	1	140		0.3556	0.0	0159			Τ								1	
	<u> </u>								\top					_	$\neg \uparrow$		†	
	Survey MD		An	gle	Directi	tion	7	TVD	\top	N/S C	oordinat		E/W Co	ordinate		Vertica	el Section, m	DLS, */30m
					 		 		+				-		$\overline{}$	-	N Section,	ULS, /SUM
					 		 		+-				 		-+			
 					 		 		+-				<u> </u>		\dashv		 .	
Hrs.	/Fam. To		1 2-4		<u> </u>				<u> </u>									
3:00	(From -To		Code	+									Hours Ending a	t Midnigl	11			
6:30	3:00	- 3:00 - 9:30	01										s. No mud cut.					
0:30		- 10:00	04					1m - 4375n										
8:00		- 18:00						-job safety					nd POOH to 12	200-00				
1:00		- 19:00											OOH # 1296m		/1 etan	d above BC	207-1	
1:00		- 20:00											n boost. No ch				JP 5).	
1:30	20:00	- 21:30	05					10 mins. Co						ango in	gas a no	mad cot.		
1:00	21:30	- 22:30	05				& break ou								-			
0:30	22:30 -	- 23:00	62	Clean	rig floor. I	Held r	pre-job safe	ty meeting	regard	ting loggi	ing ope	rations &	use of RA so	urces.				
1:00	23:00	- 24:00	25					r logging ru										
			-	—														
				—														
				┼														
			+	┼														
			+	┼														
			+-	+														
			+-	Open	etions @	0500!	hre 7/23: C	'amaleted k		#2:1	DTICK	" 'CP '	TD 6426	- 200	*****			
			+-	+	Mons &		115, 1/23.	Onibiered v	Yyging	TUIT #2. C	LDI/Ci	IUGK, R	ogger TD 5426	m. POC	H logging	tools.		
			+	 														
2	4 hr	Comple	te circula	ating out	gas cut n	nud. F	out of	f hole to 251	1mm c	asing sh	ne. PO	OH & rig	un to log.					
	nmary:				-							<u> </u>	1 44 10 105.					
	jected	Comple	te wirelin	e loggin	g runs #2	(LDT	/CNL/GR) {	& #3 (MSCT	Γ).								·····	
Oper	rations:					_												
	afety	No accid	lents, no ir	ncidents.	No pollutio	n sigh	tings reporter	d. Held daily	pre-tou	ır & safety	meeting	35 .					Accidents:	NAR
	tues:	Standby	Vessel is		lebron Sea												Safety Rep:	H-L Balasch
Daily Mud		\$12	2,065	Daily Ta	angible Cos	at .	\$	14,982	Daily F	Form Eval	Cost		\$35,886	1	Daily Drillin	g Cost		\$507,247
Cum Mud		\$3,2	38,299	Cum Ta	angible Cos	it		,815,557	Cum F	Form Eval	Cost:		2,545,672	-	Cum Drillin	g Cost		
Chevron !	4:		37												Total Appr:			\$57,214,196 \$79,478,760
Bulk Gel, m³ Country:			1.9	Cement,		20.	Fuel			Bulk Wt,			Rig Heave, m		Pitch,	Roi,		\$79,476,760
Country:				lm³		204.6	Ria	4,151	- lu	m³ UWI:		51.4		0.3 Orilling R	deg (). leos:	.2 deg	0.2	
Field:				nada		Losso	DV	W Millenniur	<u> </u>		3(00H2343 Well:	20060450				nes / Curran /	Bruton
		Explora	MOO			1		EL 2359	9			1	Chevron	et al N	lewburn H	L23	Dete:	22-Jul-02

Chevron et al Newburn H-23

	ron C	anada	Res	ource						vron et	al. N						Drilling		y Re	port	(metric)
essured OL:	Depth:		5,4 DFS:	25 m	TVC			345 m	PBTD:	lO _{eik} .			Propos	sed MD:	Incia d	6,40	Propos) m	ed TVD:	ad Llass	6,31	5 m
OL:	64	Drag:	UFS:	63 Rot Wt:		<u> </u>	Date:	/eight:	22-May-0	S/O Wt:	meters		l set R	0 m OP Test:	Daily R	OR HITS:	0.0	HS Total Re	OL MINE:	82	2.5
m		kdaN		kdeN			kdeN	eigrit:		kdeN			<u> </u>			0-Jun-0				1	23
ast Casi			1 mm	Set At:	A A		404 :		MD		4,402			Shoe Test, kg/m	1 ⁴ :	186	Leskof 1		NO		
	Hrs on Cas	ung:		12.5	Cum Rot	HITS ON	Casin	g Since L	ast Calipe	r: 8:	2.5	vvnepan	lock Se			·		KOP:		4,11	
iner Size				Set At:					MD	lot- E-				Liner Top At:	104		50./	MD		0-1	TVD
lud Co:	M-I			Туре:	Syr	thetic	-base	d		Sample Fr	om:		Wt, kg/m²		FV. s/qt		PV. cP 30	YP. Pa	5	Gei Pa	5/10
/L API. c/30min		HTHP:	3.4		APVHTH	IP:		1.6	Solids:	26.6	% Syr	n:	55.0	% Water:	18.4	SWR:	78/24	MBT, Kg/L	0.00	pH:	
'sm:	2.6	ES, volts			Carb:		CI:	35,000	Ca/Mg:		ASG:		20	Solids % HG/LG		26.3	24hr A	vg SOC %:		o cutting:	
ngr Ser			Materi	als added	last		.	33,000	<u> </u>					1		20.3	<u> </u>				
		2	24 hrs	<u> </u>																	
rig Gas	:		Max G	as:		_	Conn	Gas:		Trip (Gas:			Trip Ct:			Remarks:				
		•				т.			т_		Jet	s, mm		 							
Bit No.	IADC	Size		Manufac	turer	Se	erial N	umber	Тур	• N	o. Siz		Size	TFA, mm²		MD in		MD Out	-	TVD	out .
						<u> </u>			<u> </u>		L	0	0.0								
							,		<u> </u>		<u> </u>	ļ		ļ			_				
meters	Ho	urs	WOB, kdaN	RPM	۲	Row	٥	Row	DC	1	.oc		В	G		Char		?Pull		Cost/m	eter
																				#VAL	UE!
	10																				
otal Ler	gth of BHA				BH	A Desc	ription	:													
Bit Cost S	Row 1	0	Row	2	Rig. /hr	\$ 25,	.000	Trip Time,hr	14.	O DCS	ize.	1	27	DP Size, mm:	127	Hour		Hrs Since	Last Ins	pection:	82.5
Bit	Lin	er, mm	Str	roke, mete		'/STK	SF		ess, KPa	liter/min	Je	t Vel, m	Vsec	DP AV, m/min	DC A		Bit HHP	BHH-P/n		Pum	HHP
		140	+	0.2556	1.	0150	\vdash	_			┢				T			-			
		140	+-	0.3556	- U.	0159	\vdash	\dashv			_				 			 			
	Survey Mi	,	Ar	gle	Direct	tion	\vdash	TVD		N	/S Coo	rdinate		E/W Co	ordinat		Vertic	al Section, m		DLS	°/30m
	00/10/			3-			-			<u> </u>										5.00.	700
							╁			 									-	├─	
							├							 						 	
	/F T	-1 11	Code	. T			<u> </u>	-			``	one Cou	ncina 2	4 Hours Ending a	• Midai					<u>. </u>	
Hrs. 0:30	(From -T	- 0:30			- 0441	0	- 40	00.107	C C L L L L		7,000		<u></u>	- Troois Change		<i>-</i>					
0:30	 	- 1:00							-CNL to	scover mu	d in to	ol (O-F	Ring m	rissino)							
1:00	 	- 2:00		_	e out LD				JPUOL. U	300101 1110		<u>(</u>									
0:30	2:00	- 2:30	25 1	RIH GI	R-LDT-C	NL to	1300	m.													
2:30	2:30	- 5:00	25	Log ru	n #2: GF	R-LDT-	-CNL	Log from	n 5425m	to 5350m	(ELM)									
2:30	5:00	- 7:30			& lay do																
3:00 2:00	7:30	- 10:3 - 12:3			MSCT-		to 400	JUm. Toc	ols not res	sponding.											
0:30	12:30	- 13:0			e out M																
1:00		- 14:0			SCT-GR		00m.														
1:30	14:00	- 15:3	0 25	Tools	not resp	onding	. PO	OH MSC	T & adjus	st coring m	notor s	ettings	(to co	mpensate for h	eavy п	nud).					
8:30	15:30	- 24:0	0 25	RIH M	SCT-GR	t. Atte	mpt to	cut 25 s	idewall c	ores. Beg	in PO	OH.									
	 																				
	+			Note	On 22-1	uh 17	Conn	V receive	ed written	annoval	from ⁶	Boh Ha	ie (CN	ISOPB) to test	BOP *	ter cem	entino 197 m	m liner			
	 		+	14018.	J., 22-V	3.9 3 (willen	. approval			,		di		y 131 II				
	† —		$\neg \vdash$	1																	
				Oper	ations @	0500)hrs, 7	7/24: Hok	d pre-job	safety me	eting.	Rig up	to run	197mm liner.							
	İ	1																			
	24 hr immary:	Comp	lete loggi	ng run #2	(GR-LD	T-CN	L) & r	un #3 (M	SCT-GR).											
		POOL	wireline	& ria dov	m Schle	mberr	ner P	a un A h	egin nin	ning 197m	m line	r.									
	rojected erations:	1.00		J			,	.g up u 0	-y=-104#									-			
	Safety	No ac	cidents, no	incidents.	No pollut	ion sig	htings	reported.	Held daily	pre-tour &	safety	meeting	3 .					Accidents:		NA	R
- 1	56UB\$:	-	by Vessel						<u>·</u>									Safety Rep	×	H-L Ba	
Daily M	ud Cost		7.600	Daily T	angible C	ost		\$10	8,662	Daily Fort				\$58,664			nilling Cost			598,68	7
Cum Me	d Cost:		,245,899	Cum T	engible C	ost			32,219	Cum Form	n Eval	Cost:		\$2,604,336		1	rilling Cost		\$5	7,812,8	82
Chevro	n %:		37	1												Total A	ppr:		\$7	9,476,7	60
Bulk Ge	4.		24.9	Cemen m ³	ι.	204	6	Fuel, m³	4,12	2.9 m ³	WŁ,	31	51.4	Rig Heave, m	0.3	Pitch, deg	Roll, 0.2 deg	0.2			
Country	:			anada			Rig:		Millennia	luwi	:			4320060450		Reps:		Jones / Cun	ran / P	ruton	
Field:		Fval	oration			Loc	50 :		EL 235				Well:		on et a	Newbu		Deter		23-Jul-0:	2
														2770711							

DW Millennium

EL 2359

Canada

Exploration

300H234320060450

Chevron et al Newburn H-23

Robichaux / Curran / Bruton

		anada	Reso	urces					vron e	t al. N	ewbu					Drilling		y Re	port (metric)
Measured	Depth:			25 m	TVD:		5,345 m	PBTD:				Propos	sed MD:		6,400	Propos m	ed TVD:		6,31	5 m
DOL:	66		DFS:	65		Spud	Date:	22-May-0	2 Desi	ly meter	8 :		0 m	Daily Ro	t Hrs:	0.0	HS Total R	lot Hrs:	82.	.5
Torque: Nm		Orag: kdaN		Rot Wt:			P/U Weight: kdeN		S/O Wt: kdaN			Lest B	OP Test:	30	-Jun-02		POB:		11	$\overline{}$
Last Casi	ng Size:			Set At:				MD	NUBIT			TVD	Shoe Test, kg/m			Leekoff	7			∸⊢
Cum Rot	Hrs on Ca		mm		Cum Rot F		404 m Casing Since	Last Calipe	r.	4,402		tock Se			186	<u> </u>	KOP:	NO		-
Liner Size		-	8:	2.5 Set At:				MD		82.5	<u> </u>	TVD	Liner Top At:				MD		4,11	0 m TVD
									Sample I	Črom:				FV.		N/	YP,			
Mud Co:	M-I			Туре:	Synt	hetic	-based		Sample I	rom.	Pits	₩ŧ, kg/m²	1789	s/qt		PV. P 26	Pa	6	Gel, Pa	5/8
WL API, cc/30min		HTHP:	3.4	FC(mm) mm	APVHTH	P:	1.6	Solids:	26.6	% Sy	n:	55.0	% Water:	18.4	SWR:	76/24	MBT.	0.00	pH:	
Psm:		ES, volts			Carb:		Ct:	Ca/Mg:	20.0	ASG			Solids % HG/L0			24hr Av	g SOC %:		o cuttings	lest 24
Engr Sen	2.8			25 Is added	ast		35,00	0			4.	20	L		26.3 /	0.3			hrs	
		2	24 hrs:																	
Drig Gas:			Max G	88:	67	.00	Conn. Gas:		Trip	Gas:			Trip Cl:		ľ	Remarks:				
Bit No.	IADC	Size	7	Manufact	turer	s	erial Number	Тур	,	Je No. Siz	ts, mm	Cine	TFA, mm²		MD In		MD Out		TVD C).t
			+					+		NO. 312	$\overline{}$	1		\vdash				\dashv		
						┢─			+	+	0	0.0	 	 				\dashv		
		L	WOB,	1		Ь_		+			┼	<u></u>						\dashv		
meters	Н	urs	kdaN	RPM	I-F	low	O-Row	DC		Loc	<u> </u>	8	G	<u> </u>	Char		?Pull		Cost/m	ster
											<u> </u>			<u> </u>					#VALL	JE!
,	:			<u> </u>																
Total Len	gun of BH.	\ :			ВНА	Desc	ription:													
								-												
	7:	* 1																		
Bit Cost	Row 1	10	Row 2	!	Rig\$	25,	000 ^{Trig}			Sze,	1	27	DP Size, mm;	127	Hours		Hrs Since	Last In	spection:	82.5
\$ Bit			-		/hr	STK	I I Ime	hr Press, KPa	liter/mi		st Vel, m		DP AV, m/min	DCAV	Jars	Bit HHP	ВННР		Pump	
	- G	er, mm	300	oka, meter		_	35.00	riess, nra	-ACC-71118		X 701, 11	4300	Dr Av, Ileinai	1			-	/// with	- Cultip	TWW
<u> </u>		140		0.3556	0.0	159			<u> </u>					┼			-		├	
<u> </u>	<u> </u>						1						<u> </u>	<u> </u>			<u> </u>			
	Survey M	D	Ang	gle gle	Directi	on	יו	/D	<u> </u>	N/S Co	ordinate		E/W Co	pordinate		Vertic	al Section, n	n	DLS.	°/30m
													ļ							
Hrs.	(From -1	(o) hh:mm	Code	T						Operati	ions Cov	vering 2	4 Hours Ending a	at Midnigh	rt.					
17:30	00:00	- 17:3	0 08	Cont R	IH w/ line	er on	127mm dp (145 stds) t	5350m	per the	e MI lin	er runr	ning schedule.	Well bal	looned	a total of 6.4	m³ over ti	heorteti	cal displa	cement
				Flow o	heck at 3	3666	m and 4404	n at the cas	sing sho	e. Wei	static.									
0:30	17:30	- 18:0	T80 0	Tag bi	ridge at 5	350n	n, slack off 9	daN and a	ttempt to	o work	down.	31.1 d	aN extra drag t	o come i	free. So	rew in the T	DS and cle	ose the	Hy-flo	
<u> </u>				_			oat equipme													
1:30	18:00	- 19:3	0 08T										ind wash down						п.	
4:30	19:30	- 24:0	0 01T										nd Increasing to wn suspected					3 .		
4.30	15.50	- 24.0	0 011			_	increased t							mier can		e carcosaurig	<u></u>			
 	<u> </u>		+	_			pe. Set down													
	 		\top	1																
	ļ			1																
<u> </u>	<u> </u>			1																
	ļ			-																
	 		+-	+																
-	 			Oner	ations @	0500)hrs, 7/26: C	ementino I	iner @ 4	5403m								,		
 	 		-	1													· · · · · · · · · · · · · · · · · · ·			
	†			1																
Г	24 hr	Cont'd	to TIH w/	liner on	5° DP to	5350	m. Wash d	own from 5	350-540	4m. Ta	g bridg	e at 5	404m and atter	mpt to we	ork past					
Su	mmary:																			
	ojected	Attem	ot to work	past led	ge at 540	4m.	Set liner ha	nger and co	ement. S	Set & te	st liner	top pa	cker.							
	erations:	 															[Acade			
	Safety ssues:						htings reporte	d. Held daily	pre-tour	& safety	meeting)8.				···	Accidents Safety Re		NA	
Daily Mi		Stand	y Vessel is		Hebron Se angible Co		·		Daily F	orm Eval	Cost			;	Daily Dr	lling Cost:	Carety Re		H-L Bal	
Cum Mi			7,600					16,364		om Eval			\$21,070			ling Cost			\$556,964	1
		\$3,	261,690	Cum (angible Co	ot.	S3	,870,488	Com FO	EV&			\$3,028,090		Total Ap			\$	59,317,61	12
Chevror			37						<u></u>				In:- u:					\$	79,476,70	50
Bulk Ge m³			24.9	Cemen m ³	·	204	.6 m ³	4,03	7.8 m ²		3	51.4	Rig Heave, m	0.3	Pitch, deg	Roll, 0.2 deg	0.2			
Country			Ca	nada			Rig: D	W Millenniu	ım U	M:	3	00H23	4320060450	Drilling	Reps:	Robich	aux / Curra	en / Bru	ton / Liut	kus
Field:		Eval	ration			Lee		EL 235				West:	Chevr	on et al l	Newbun		Date:		25-Jul-02	

DW Millennium

EL 2359

Canada

Exploration

300H234320060450

Chevron et al Newburn H-23

Robichaux / Curran / Bruton / Liutkus

	ron Ca	inaga	Keso	urces				ron et	al. No							Activity	/ Re	port	(metric)
Measured	Depth:		5,42	5 m	TVD:	5,345 r	PBTD:				Propos	ed MD:	6.4	00 m	Propose	d TVD:		6,31	15 m
DOL:	68	C	FS:	67	Spu	d Date:	22-May-0	Daily	meters	:		0 m	Daily Rot Hrs:		0.0	HS Total Ro	t Hrs:		2.5
Torque:		Drag:		Rot Wt:		P/U Weight		S/O Wt:			Last BO	OP Test:	<u> </u>		0.0	POB:		- 04	
Nm		kdaN		kdeN		kdaN		kdaN			ـــــــــــــــــــــــــــــــــــــــ		27-Jul-()2		L		1	15
Last Casi	ng Size:	251	mm	Set At:		4,404 m	MD		4,402	m	1/0	Shoe Test, kg/r	m³:		Leskoff?		NO		1
Cum Rot	Hrs on Cas	uð:	82	_ [0			ce Last Calipe	г.	32.5	Whips	ock Set	0:				KOP:		4 1	10 m
Liner Size				Set At:			MD			<u>. </u>	TVD	Liner Top At:				MD			700
		197	mm	Time		5,403 m		Sample F	5,324				FV. 4,2	24 m PV.		Ivo	4,22		
Mud Co:	M-I			Тура:	Synthetic	c-based		Jenipie i			Wt,	1789	s/qt 105		32	YP, Pa	5	Gel, Pa	5/8
WL API,	- F	ITHP:			APVHTHP:		Solids:		% Syr	n:		% Water:	SWR:			MBT,		pH:	$\neg \neg$
cc/30min Psm:		S, volts	3.2	mm	arb:	1.6	Canta	26.6	ASG:		54.0	Solids % HG/L	19.4 C:		75/25	g SOC %:	0.00	o cutting:	120 74
PSIII.	3.0	S, VOILS	33	20	.ez u.	Ch: 35,	Ca/Mg:		733.		20	SOILS TO HOLL		2 / 0.5	241# AV	y 300 m.		bra	
Engr Sen	rice	_		s added la	est														
		2	24 hrs:			998 sx Ba	nte												
Dd=-C			Iu C-			Ic C		l7-in	Com			Trip Ct		Rema	den .				
Drig Gas:			Mex Ga			Conn. Gas	•		Gas:			THE CL			na.				
Bit No.	IADC	Size		Manufacti	ırer S	Serial Numbe	r Type	, ,		s, mm	C:	TFA, mm²	MD in			MD Out	Т	TVD	Out
			+						to. Siza				1		_		\dashv		
7	7 117 165			Hughes		5000738	STX-	1 3	15.9	0	0.0	594	5,425	η			_		
							l			<u> </u>									
meters	Hou	rs	WOB.	RPM	I-Row	O-Row	DC		Loc		В	G	Char			?Pull		Cost/n	neter
			kdaN	 	+	 				 		 	 				+		
0				 		+		-		-		 	+				\dashv		-
				<u> </u>								1	l		L				
Total Len	gth of BHA:		367	35 m	BHA Des	cription:													
अपर																			
 																			-
Bit Cost	Row 1		Row 2		Rig\$ 25	T	rip 18 (IDC	Size.		24	DP Size, mm:	Hou	rs On		I.,			
\$		0			/hr 25		np 18.0 e,hr	mm		1	21		102 1	ers:	0.0	Hrs Since I	Last Ins	spection:	0.0
Bit	Line	r, mm	Stro	ke, meters	m³/STK	SPM	Press, KPa	liter/min	Je	t Vel, π	Vsec	DP AV, m/min	DC AV, m/mi	n Bit	HHP	8HHP/m	vm²	Pum	p HHP
7		40	1	0.3556	0.0159														
			- `	3.5550	0.0133	' 			+				 	_				 	
			т.	. т				-						╁┈					
Ь—	Survey MC		Ang	10	Direction	ļ	TVO		WS Coo	romate		EWC	oordinate	-	Vertica	l Section, m		DLS.	, °/30m
L																		<u> </u>	
					-									İ				1	
ļ —						1								1					
Hrs.	(From -To	\ \	Code	 1		ــــــــــــــــــــــــــــــــــــــ		L	Oceratio	one Cou	ering 2	4 Hours Ending	at Midnight	ч				<u> </u>	$\overline{}$
				ļ															
2:00	00:00	- 2:00	14								test jo	int (102mm x	127mm") on 5	DP.					
1:00	2:00	- 3:00	14				OP isolation												
5:30	3:00	- 8:30	14									oke & kill line							
<u> </u>						25/34750 ki	Pa. All tests 5	minutes	with no	O Diee	off. A	il pressure tes	t runctions per	ronned	on yelk	ow pog. Fur	icuon	test BO	P's nom
	ļ				on blue pod.														
3:30	8:30	- 12:00					nd POOH. L/I												
2:00	12:00	- 14:00		Pressur	e test surfac	ce equipme	nt. Test uppe	r & lower	IBOP's	s 1725	/69500	psi. Test kelly	/ hose 1725/4	500 kP	'a.				
1:30	14:00	- 15:30			· · · · · · · · · · · · · · · · · · ·		port pump i	n test sta	nd.										
6:00	15:30	- 21:30	_		p & RIH 165														
0:30	 	- 22:00					vice loop hos	Se.											
2:00	22:00	- 24:00	07	Pick up	& RIH 27 jts	s 102mm dr	illpipe.												
	L			<u> </u>															
				<u> </u>															
<u></u>																			
				Operati	ons @ 0500	hrs, 7/27: F	inish slip & c	ut drill lin	e. Cont	tinue R	IH 102	mm drillpipe.							
	L																		
	L																		
	24 hr	TIH tes	t tool and	pressure	test BOPE	to 1725/69	500 kPa for 5	minutes	POOF	i & lay	down	test tool. Make	up 165mm bi	& BH/	ι.				
L Su	mmary:																		
Pı	ojected	Slip & d	out drill lin	e & pres	sure test cas	sing. Contin	ue RIH 165m	m bit & d	rillout 1	197mm	liner.	Spot LCM on I	bottom & POC	H to log	cased	hole VSP.			
	erations:																		
	Safety	No acc	dents, no i	ncidents. I	No pollution si	ghtings repo	ted. Held daily	pre-tour 8	safety	meeting	s.					Accidents:		N/	\R
	ssues:				ebron See.											Safety Rep	:	H-L Ba	
Daily M	d Cost				ngible Cost		£2 £25	Daily Fo	m Eval	Cost:		\$28,453	Daily	Drilling (Cost			567,52	
Cum Mi	d Cost:		6,395	Cum Ta	ngible Cost:		\$3,625	Cum For	m Eval	Cost			Cum	Drilling (ost				
Chevror		\$3,2	93,000	 	,		3,887,600	 				3,090,579		Appr:				0,459,5	
			37	lo-	*	12		<u></u>	i. 10=			Din Heer			Rol.		\$7	9,476,7	60
Bulk Ge m³	•	2	4.9	Cement, m ³		0.3 m ³	ι 3,96∈		k Wt.	3	09.4	Rig Heave, m	0.5 deg		deg.	0.6			
Country				nada		lRia:	DW Millenniu	luv	n:	34	00H234	4320060450	Drilling Reps:		Robida	ux / Curran	/ Brut	on / Liut	tkus
Field:		Ev-1-			Le	ese:					Well:		ron et al Newb			Date:		27-Jul-0	
1		Explo	AUON		- 1		EL 235	7			I	CHEVI	~ · · · · · · · · · · · · · · · · · · ·		-	L			

Exploration

300H234320060450

Chevron et al Newburn H-23

DW Millennium

EL 2359

Robichaux / Curran / Bruton / Liutkus

28-Jul-02

ountry:

eld.

Canada

		anada	Resc	urce					ron et	al. Ne	wbu				Dri			Report (metric)	
Measured	Depth:		5.42	27 m	TVD:		5,347 m	PBTO:				Propos	ed MD:		8,400 m	Propose		6,315 m	
DOL:	70	C	FS:	69	F	Spud C		22-May-0	2 Daily	y meters	:		2 m	Daily Rot I		1.0	HS Total Rot H		
Torque:		Drag:	4.4	Rot Wt:	22		VU Weight:		S/O Wt:	~	22	Last BO	OP Test:	27 1	uL02		POB:	120	
Nm Last Casir	4067 ng Size:	kdaN	4.4	kdaN Set At:			idaN	MD 230	kdeN			TVD	Shoe Test, kg/m		ul-02	Leakoff?			
Cum Rot I			mm		Cum Rot H		104 m Casing Since	Last Calipe	:	4,402		lock Set				1	KOP:		
Liner Size				3.5 Set At:				MD		83.5	Ь		Liner Top At:		4.00:		MD _	4,110 m	
		197	mm	Type:		5,4	103 m		Sample F	5,324 i	m	Wt.	L	FV,	4,224 m PV.		YP.	,224 m Gel,	
Mud Co:	M-I	нтнр:					based	Solids:			Pits	kg/m²	1813 % Water:	s/qt 1	26 CP	34	Pa 5 MBT,	Pa 7/10	
cc/30min		HIHP:	3.2	mm) APVHTHP	:	1.6	Solids:	28.9	% Syn	ı. 	53.0		18.1	rrc;	75/25	Kg/L 0.0		
Psm:	2.9	ES, volts	4	00	Cartı:	1	⊅: 35,00	Ca/Mg:		ASG:	4	.10	Solids % HG/LC		6.5 / 1.1	24hr Avg	SOC %:	No cuttings lest 24 hrs	
Engr Serv			Materie	is added	last		238 sx Barit			80 sx				16 drums		·	20 sx Nutplug		
		2	24 hrs:				coo sx barn			00 3A	CHILL			10 diums	IVOVAIIIO		zo sx reupius		
Drig Gas:			Max G	85:		1	Conn. Gas:		Trip	Gas:			Trip Ct:		Rem	arks:			
		T	+					-		Jet	s, mm			T		T-	WD 0: 4	7001	
Bit No.	No. IADC Size			Manufac	xurer	Ser	rial Number	Тур	<u>' '</u>			Size	TFA, mm³	MI) In	┼	MD Out	TVD Out	
7	117	165		Hughe)5		5000738	STX-	1 3	15.9	0	0.0	594	5,4	25 m	 		 	
		<u> </u>		,								<u> </u>		<u> </u>		<u> </u>			
meters	Н	ours	WOB, kdaN	RPN	4 HR	ow	Q-Row	DC		Loc		В	G	С	har		?Pull	Cost/meter	
2	1	.00	7.6	85		\Box												\$241,995.00	
				L^-		\Box													
Total Len	gth of BH	A:	367	.35 m	ВНА	Descri	iption:	165mm	Mill Tool	th Bit, B	Bit Sub	(w/ flo	at), 9 x 121mm	DC's, XO	, 18 x 102	2mm HW	DP, 121mm J	ars,	
11 x 102	nm HWD	P																	
٠,			·																
Bit Cost	Row 1	8,990	Row 2	2	Rig\$	25.0	000 Trip		DC mm	Size,	1	21	DP Size, mm:	102	Hours On	1.0	Hrs Since Las	t Inspection: 1.0	
S Bit	1 1	ner, mm	Sto	oke, mete	/hr ers m²/s	STK	SPM I	nr Press, KPa	liter/min	1	t Vel, r	n/sec	DP AV, m/min	DC AV. rr	Jars: Vmin B	ik HHP	SHHP/mm²	Pump HHP	
			+			\dashv				-			 						
7	_	140	+	0.3556	0.0	159	82	29510	1301	+	36.4		98.0	130.0	' 	39	756.15	858	
 	Sug	n 1		nie .	Diseas!	_+			-	N/S Coo	rdicete		EANC	pordinate	+	Vanion	l Section, m	DLS, */30m	
 	Survey M	-	An	Angle Direction				-					5,70			+ en inca		UCS, /3UM	
 -		-			 				 				 		\dashv				
 					 	\dashv			 				 		+				
 			1-	1	1				L	000		meion o	A Nove Ender	ne keintninka			** **		
Hrs.		To) hh:mm	Code				lantaria - 1	ala w/ 4844					4 Hours Ending				15.5		
1:00	1:00	- 1:00					lisplacing h				RE TUS	ining ch	oke & kill lines	w/ 5ame.					
7:30	2:30	- 10:00									er to d	rill wipe	er plug / dart. A	ppears bit	is rotating	on top o	of plug.		
2:00	10:00	12:00			ce failed s							-							
4:30	12:00	- 16:30					 	djusting pa	rameters	s in orde	er to d	rill wipe	er plug / landing	g collar. Bit	broke th	rough w/	10k daN WOE	3, 60RPM & 60spm	
5:30	16:30	- 22:00		Drill s	hoe track a	and flo	oat equipme	ent to 5403	m. Drift 2	m hard	ceme	nt belo	w shoe to 540	5m.					
1:00	22:00	- 23:00	-						eam 216	imm rat	hole to	54250	n, no problems	s					
1:00	23:00	- 24:00	02	Drill 2	m new for	mation	n from 5425	to 5427m											
 	 		+	+															
 			+-	+-											· · · · · · - ·				
				1															
				+						al appro	oval f/	B Hale,	CNSOPB, to	cont drilling	program	using lo	wer annular pe	eventer	
<u> </u>	 						reventer out					- 41 .	2	4 01:00					
				Note:	Reported	< 0.15	o m" water l	pased cem	ent space	er spill t	o Car	adian (Coast Guard ar	nd CNSOP	Б.				
<u> </u>	 		+	Oners	ations @ ^	500hr	s, 7/30: PO	OH for cas	ed hole \	VSP lon									
-	 		\neg	- Open															
	Ĺ			T															
	24 hr	Orill sh	oe track	& float e	quipment.	Drill 2	2m new for	mation.											
Su	immary:																		
	rojected	Circula	te hole c	lean & s	pot LCM p	ill on	bottom. PO	OH & run o	ased ho	le VSP	log.								
-	erations:	 -															Accidents:		
	Safety ssues:				re-tour & sa Hebron Se		eeungs.										Safety Rep:	NAR H-L Balasch	
Daily M					Tangible Co			400 540	Daily Fo	rm Eval	Cost		£34 684	lo	aily Drilling	Cost			
Cum Ma	ud Cost:		35,344	Cum 1	l'angible Co	st		186,512	Cum Fo	rm Eval	Cost	-	\$34,684		um Dritting	Cost		\$769,900	
Chevror	n %:	\$3,	341,503	+-			<u>54</u>	,076,537	 				\$3,153,717	17.	otal Appr:			\$61,795,791	
Bulk Ge	A,		37	Ceme	nt,		Fuel,		Bu	4k Wt,			Rig Heave, m		Pitch,	Roll,		\$79,476,760	

300H234320060450 Well: Chevi

DW Millennium

EL 2359

Exploration

Robichaux / Curran / Bruton / Liutkus H-23 Date: 29-Jul-02

DW Millennium

EL 2359

Canada

Exploration

300H234320060450

Chevron et al Newburn H-23

Robichaux / Curran / Bruton / Liutkus

Chev			vror	n et al	. Ne	wbu	m H-	23	Drilling Activity Report (metric)										
Measured	d Depth:		5.43	27 m	TVD:		5,347 m	PBTD:					Propos	ed MD:	6,40	Propos	ed TVD:		315 m
DOL:			DFS:			Spud				Daily m	eters:				Daily Rot Hrs:		HS Total Rot Hr		
Torque:	72	Drag:		71 Rot Wt:			P/U Weight:	22-May-0	S/O\	Wh:	_		Last BC	0 m OP Test:	L	0.0	POB:		1.0
Nm .		kdaN		kdaN			kdaN		kdeN						27-Jul-02	2	<u> </u>		115
Last Casi	ng Size:	25	1 mm	Set At:		4.	404 m	MD	-	4.	402 n	^	TVD	Shoe Test, kg/m	³ : 198	Leekof	7 NO		
Cum Rot	Hrs on Car				Cum Rot H			ce Last Celips	ir.		1		ock Set	Q :	130	·····	IKOP:		
Liner Size			8:	3.5 Set At:				MD		83.5	5		TVD	li inne Ton Ab			<u> </u>	4,	110 m
Liner 3izi	•	19	7 mm	36 AL.		5,4	403 m	MU		5,3	324 n	n	140	Liner Top At	4,22	4 m	MD 4,	224 m	TVD
Mud Co:				Туре:					Sam	ple From			Wt,		FV.	PV.	YP,	Gel,	
WL API,		HTHP:		EC/	Synt		based	Solids:	<u> </u>	Ter	Syn:		kg/m²	1813 % Water:		cP 37	Pa 5	Pa	5/10
cc/30min		nine.	3.2	mm	AFERITA	•	1.6	Solius.	27	7.6	a Jyn.		53.0	76 Water:	19.4 SWR:	75/25	Kg/L 0.00	pH:	
Psm:		ES, volts			Cartr:	- 10	CI:	Ca/Mg:			SG:			Solids % HG/LG			g SOC %:		igs lest 24
	2.8			25]			35,0	000				4.	10	L	26.5	1.1			YS.
Engr Ser	VICE	2	24 hrs:	is added	last		175 sx Ba	rite											
			1-11												· · · · · · · · · · · · · · · · · · ·				
Drig Gas			Max G	no:		- 1	Conn. Gas:			Trip Ga	-			Trip Ct:		Remarks:			
J., 3 Cas	•										- .			1		-			
Bit No.	IADC	Size		Manufac	turer	Se	rial Number	т Тур				, mm		TFA, mm³	MD In		MD Out	TVI	Out
									_	No.	Size	No.	Size						
8	M433	165		ecurity (DBS		702953	FM26	43i	3 15.9 (0	0.0	594	5,427 m				
				-															
meters	Hours WOB,			RPM	Т.,	I-Row O-Row		DC		Loc	一		ь В	G	Cher		?Pull	C	/meter
11101013	- RO	uis	kdaN	RPM			O-Row		,								rrus	COSI	Tribuer
0	ŀ			1	ı	ı		1		l	- 1			į	I				
				1															
Total Ler	ngth of BHA				BHA	Descr	iption:							<u> </u>	1				
			393	.62 m				165mm	PDC	Bit, A	475M	4560)	(P Mot	tor (w/ 162mm	Sleeve), Float	Sub (w/ float), 162mm Stab.	IMPulse	MWD,
APWD.	162mm S	tab, Filte	Sub, 9 x	121mm	DC's, XO	, 18 x	102mm H	WDP, 121	nm Ja	ars, 11:	x 102	2mm l	-WDP						
-,														-					
Bit Cost	Row 1	8,990	Row 2		Rig\$	25,0	77 OO	^{ip} . 18.	^	DC Size	9,	1	21	DP Size, mm:	102 Hour	On 10	Um Sinna Lan	lasaastia	- 10
\$					/hr	20,0	Time	e,hr	.	mm:					TUZ Jax	s: 1.0	Hrs Since Last	Inspection	n: 1.0
Bit	Lin	er, mm	Stro	oke, mete	rs m³/:	STK	SPM	Press, KPa	lite	r/min	Jet	Vel, m	/sec	DP AV, m/min	DC AV, m/min	Bit HHP	BHHP/mm²	Pu	mp HHP
8		140		0.3556	0.0	159													
<u> </u>				0.0000	10.0				1	\neg				 	<u> </u>				
├—	<u> </u>								-						i				
L	Survey MI	0	Ang	yle	Direction	n	1	IVO .	_	N/S	Coor	linate		E/W Co	ordinate	Vertic	el Section, m	DL	S, %30m
						- 1			1									1	
						ヿ			Т					1					
									╁									+-	
	Т								J			_				l			
Hrs.		o) hh:mm	Code	<u> </u>						Upe	Bratior	15 COV	enng 24	4 Hours Ending a	t Midnight	,			
5:00	00:00	5:00	25	Contin	ue cased	hole	VSP log. I	R/D Schlum	berge	er.									
0:30	5:00	5:30	17	Perfor	m F.I.T. d	own (choke line	against BS	R to 1	1980 kg	/m3 (MW	(1810	kg/m3 MW + 3	5 kg/m3 compr	essibility + 6	895 kPa surface	pressur	e).
2:00	5:30	7:30	07	M/U &	TIH bit #	8 (16	5mm PDC), motor and	MW	D, 3 std	is 12	1 <i>m</i> m	drill col	llars & one std	102mm HWDF	<u>. </u>			
0:30	7:30	8:00	07	Surfac	e test MV	VD @	32 spm v	v/ 14500 kP	a					·					
1:30	8:00	9:30	07	Finish	TIH BHA														
6:00	9:30	15:3	0 05	Contin	ue TIH w	/ 91 s	tds HT40	DP to 2600r	Π.										
0:30	15:30	16:0	0 01	Circul	ate & coo	MWI	D tools 15	mins.											
3:00	16:00	- 19:0	0 05	Contin	ue TIH fn	om 26	600m to 42	200m								-			
3:30	19:00	- 22:3	0 06 T	Troub	le shoot A	ınadri	II MWD/L	WD. Unable	to de	code m	nud pe	ulse. I	Down I	ink tools to incr	rease pulse am	plitude. No s	uccess.		
1:30	22:30	- 24:0	0 05	Contin	ue TIH fr	om 42	200m to 4	800m.											
	T		_	1															
	T		_																
	1																		
	1		1	1				· · · · · ·											
<u> </u>	†			+-															
	 		+-	+															
	 		- 	+				-											
 	 			00000	ione @ ^	EACH-	- 8/04· O	rillian 155—	n ha'	a @ 54	35~	MC 5	ollow	ng successul 2	040 ko/m³ E 13				
-	 			Opera	Anna Cgr U		3, GOT. D	y 100M		- W 34	20111	-a.J. F	J.JWII	ny successul 2	U-U NGERRE F.I. I	 			
-	 			1															
<u> </u>		la		1											. b.a. 0. 4285				
	24 hr immary:	Compi	ete cased	noie vs	P & ng oc	own S	chiumber	ger. Penom	FII	to 1980	kg/m	3 EM	n pnor	to RIH 165mn	n bit a urunnig c	na.			
-												-							
	rojected erations:	Contin	ue TIH 16	omm bit	& drilling	BHA.	. Perform I	FIT to 2040	g/m3	ppg. D	nil al	nead 1	65mm	nole.					
<u> </u>		4															IAcoid		
	Safety						ntings. Held	deily pre-tour	& saf	ety mee	tings.						Accidents:		IAR
	ssues:	Standt	y Vessel is		lebron Sea												Safety Rep:	H-L	Balasch
Daily M	ud Cost		10,134	Daily To	angible Co	at:		\$80.899	Davy	y Form E	eval C	ost		\$209,937	Daily D	rilling Cost		\$820,4	99
Cum Mi	d Cost:		360,974	Cum Ta	ngible Co	t:		4,159,861	Curr	Form E	vel C	ost		3,393,882	Cum Di	illing Cost		\$63,172	.640
Chevror	n %:			+				-,100,001	T		_			-,,	Total A	opr:			
Bulk Ge	4.		37	Cemen			Fuel		Ц.,	Buik W	ì.			Rig Heave, m	Pitch.	Roff,		\$79,476	
m³.			24.9	m ³		220.	3 m,	3,83	0.8	m³	_	29	9.5	<u> </u>	0.3 deg	0.3 deg	0.3		
Country	:		Ca	nada			Rig:	OW Millennis	ım	UWI:	_	30	0H234	320060450	Drilling Reps:	Robich	aux / Curran / B	ruton / L	iutkus
Field:		Explo				Loas		EL 235					Welt:		on et al Newbu	n H.23	Date:	31-Jul	02

Exploration

Exploration

eid:

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

Robichaux / Ruitenschild / Bruton / Liutkus

1-Aug-02

300H234320060450

DW Millennium

EL 2359

/ Ruitenschild / Bruton / Liutkus

2-Aug-02

Robichaux

Chevron et al Newburn H-23

ountry

Canada

300H234320060450

Chevron et al Newburn H-23

DW Millennium

EL 2359

Exploration

Robichaux / Ruitenschild / Bruton / Liutkus

3-Aug-02

	ron Ca	anada	Keso	ILCOS				ron et	ai. Ne						Activity R	eport (metric)
DenueseN	Depth:		5,75	2 m	TVD:	5,665 m	PBTD:				Propos	ed MD:	6,40	Propos) m	nd TVD:	6,315 m
OOL:	76	To	OFS:	75	Spuc	Date:	22-May-02	Daily	meters	:		70 m	Daily Rot Hrs:	21.0	HS Total Rot Hrs	
Torque:		Drag:		Rot Wt:		P/U Weight:		S/O Wt:			Last BC	OP Test:			POB:	
Ym.	6101	kdaN		kdeN	223	kdeN	230	kdeN	22	22			27-Jul-02			121
Last Casir	ng Size:	251	mm	Set At:	4	,404 m	MD		4,402	n	TVD	Shoe Test, kg/m	¹ : 204	Leakof 11	NO	
Cum Rot	Hrs on Cas	ing:	137	Curr	Rot Hrs or	Casing Sinc	e Last Caliper	-	37.0	Whipst	ock Set	C :			KOP:	4,110 m
Liner Size	r:			Set At:			MD	<u>-</u>			TVD	Liner Top At:	4.00	4	MD	TVD
		197	mm	Туре:		,403 m		Sample F	5,324		لــــا		4,22 FV.	PV.	YP. 4,2	24 m Gel,
Mud Co:	M-I			тура.	Synthetic	-based	l	Semple :			₩ŧ,		s/qt 128		Pa 5	Pa 5/8
WL API,		HTHP:		FC(mm) API			Solids:		% Syn			% Water:	SWR:		MBT.	pH:
cc/30min		CO	3.2	mm Carb		1.6	Canton	28.7	ASG:		52.0	Solids % HG/LG	19.3	74/26	Kg/L 0.00 g SOC %:	0.05
Psm:	4.0	ES, volts	55			Ct: 35,0	Ca/Mg:		~33 .	4.	10	Sunus 76 FIGICO	26.5		y 300 M.	0.05
Engr Sen	vice			added last		ER2 ou bon	**		18 45	um No	uamud					
		2	24 hrs:			563 sx bari	K8		10 01	3111 140	varrius					
Dda Caa			Max Ga			Conn. Gas:		Trio	Gas:			Trip Cl:		Remarks:		
Drig Gas:			Max Ga	5.	1.20%	Conn. Gas.			G88 .					- Contract Case		
Bit No.	IADC	Size	1	Manufacture	r s	erial Number	Туре			s, mm	C:	TFA, mm²	MD In		MD Out	TVD Out
			-		─ ├-			 -	to. Size							
8RR1	M433	165	S	curity DBS	rity DBS 702953			131 3	15.9	۰	0.0	594	5,480 m			
										0	0.0					
meters	Hou	urs	WOB, kdaN	RPM	I-Row	O-Row	DC		Loc		В	G	Char	Į.	?Pull	Cost/meter
					 	┼	_	-		_			 			
272	27.	50	3558.6	80	 	 		-				 				\$4,215.04
					<u> </u>	<u> </u>				Щ.		<u> </u>	L			
Total Cen	igth of BHA	•	393.	93 m	BHA Des	cription:	165mm	PDC Bit	<u>, A475</u> N	14560	(P Mol	tor (w/ 162mm	Sleeve), Float	Sub (w/ float	, 162mm Stab, I	MPulse MWD,
APWD	162mm S	tah Filter	Sub 9 v	121mm DC	* XO 18	x 102mm H	WDP 121m	m Jars.	11 x 10	2mm 1	WDP	Bit to - Resisti	vity: 12.38m, [&I: 13.96m.	Gamma: 14.63m	
4	102	100, 1 1101	000, 5 x		3, 70, 10	X 102111111							,			
Bit Cost	Row 1		Row 2		Rig\$ 25	ooo Tri	0	IDC	Size.			DP Size, mm:	Hour	On	T	
\$		8,990			/hr 25	,000 Time		mm			21		102 Ja		Hrs Since Last 1	nspection: 54.5
Bit	Line	er, mm	Stro	e, meters	m³/STK	SPM	Press, KPa	liter/min	Je	Vel, m	/sec	DP AV, m/min	DC AV, m/min	Bit HHP	BHHP/mm²	Pump HHP
8RR1	· .	140	<u> </u>	2558	0.0159	55	30337	873	1	24.4		66.0	87.0	12	231.19	592
OKKI	 	140		.3556	0.0159	1 30	30337	0/3	+	27.7		00.0	57.0	- '` -	251.15	1 332
		-		····	<u></u>	 							<u> </u>		<u> </u>	
	Survey Mi	2	Ang	•	Direction		VD		N/S Coo	rdinate		E/W Co	ordinate	Vertic	al Section, m	DLS, 9/30m
	5,681.29	m l	6.3	,	302.08	5,594	4.09 m		245.	65		-38	5.39	4	56.98 m	1.28
	5,710.35		4.8		306.6	5.62	3.01 m		247.	24		-38	7.74	4	59.81 m	1.62
												1				1.64
	5,738.60		3.5	·	318.61	3,00	1.18 m		248.	_			9.29 • Mideiate		81.85 m	1 1.04
Hrs.	 	o) hh:mm	Code						Operacio	ms Cov	enng 2	4 Hours Ending a	st witchight			
6:00	00:00	6:00				(avg ROP=										
6:00	6:00	12:00	0 02	Drill # 570	00m - 571	4m (avg RO	P= 2.3 m/hr)									
			0 02	Drill f/ 57	14m - 575	0m (avg RO	P= 4.5m/hr)									
8:00	12:00	20:00			and incre-	see LAW f/ 15	5.1 ppg to 15	5.3 ppg								
3:00	20:00	23:0	0 01													
	+		0 01			2m (ROP=2										
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01												4	
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01													
3:00	20:00	23:0	0 01	Drill # 57:	50m - 575	(ROP=2		Om								
3:00	20:00	23:0	0 01	Drill # 57:	50m - 575	(ROP=2	.0 m/hr)	Om								
3:00	20:00	23:0	0 01	Drill # 57:	50m - 575	(ROP=2	.0 m/hr)	Om								
3:00	20:00	23:00	0 01 02	Orill # 575	50m - 575	2m (ROP=2	.0 m/hr)		Dritt # 5	:750m	-5752n					
3:00	20:00	23:00	0 01 02	Orill # 575	50m - 575	2m (ROP=2	.0 m/hr)		Drill V 5	750m	-5752n					
3:00 1:00	20:00 23:00 23:00	23:00 24:00 Drill 1	0 01 02	Operation	50m - 575	2m (ROP=2	.0 m/hr)		Drill V S	:750m	.5752n					
3:00 1:00	20:00 23:00	23:00 24:00 Drill 1	0 01 0 02	Operation	50m - 575	2m (ROP=2	.0 m/hr)		Drill V S	3750m	-5752n					
3:00 1:00 1:00 St.	20:00 23:00 23:00 24 hr ummary: rojected perations:	23:00 24:00 Drill 1	0 01 0 02 65 mm ho	Operation Operation From 568	50m - 575.	2m (ROP=2	.0 m/hr) Silling @ 578/	6 kg/m³.			-5752n				Accidents:	NAR
3:00 1:00	20:00 23:00 23:00 24 hr ummary: rojected	23:00 24:00 Drill 1 Drill 1	0 01 0 02 0 02 65 mm ho	Operation Operation e from 568	50m - 575.	2m (ROP=2	illing @ 578	6 kg/m³.							Accidents: Safety Rep:	NAR Gälbert
3:00 1:00	20:00 23:00 23:00 24 hr ummary: rojected erations:	23:00 24:00 Drill 1 Drill 1 No acc	0 01 0 02 65 mm holesidents. No lopy Vessel is	Operation Operation e from 568	50m - 575.	2m (ROP=2	illing @ 578/	6 kg/m³.	meetings	<u> </u>	-5752m		[Daily C	hrilling Cost		Gilbert
3:00 1:00 1:00 St. St. P. Opp	20:00 23:00 23:00 24 hr ummary: rojected serstions: Safety Issues: lud Cost:	23:00 24:00 Drill 1 Drill 1 No acc	0 01 0 02 0 02 65 mm ho	Operation Operation e from 568 e. ncidents. No	os @ 0600 2m - 5750 pollution si ron Sea. Heible Cost:	2m (ROP=2	illing @ 578	& safety intil.	meetings rm Eval	Cost:		\$35,538			Safety Rep:	Gilbert \$598,909
3:00 1:00 1:00 St. St. P. Opp	20:00 23:00 23:00 24 hr ummary: rojected serstions: Safety Issues: tud Cost:	Drill 1 Drill 1 No acc	0 01 0 02 65 mm holesidents. No lopy Vessel is	Operation Operation e from 568	os @ 0600 2m - 5750 pollution si ron Sea. Heible Cost:	hrs, 8/05: dr	illing @ 578/	6 kg/m³. 8 safety	meetings rm Eval	Cost:			Cum D	rilling Cost	Safety Rep:	Gilbert
3:00 1:00 1:00 St. Pp Op	20:00 23:00 23:00 24 hr ummary: rojected oerations: Safety Issues: tud Cost: ud Cost: ud Cost:	Drill 1 Drill 1 No acc	0 01 0 02 65 mm holesidents. No iopy Vessel is 36,732	Operation Operation e from 568 e. ncidents. No	os @ 0600 2m - 5750 pollution si ron Sea. Heible Cost:	hrs, 8/05: dr	illing @ 578r MW to 183d deliy pre-tour bandon ship c	& safety or init. Daily Fo	meatings irm Eval	Cost:		\$35,538 \$3,540,656	Cum D	rilling Cost: oppr:	Safety Rep:	Gilbert \$598,909
3:00 1:00 1:00 St. St. P. Opp	20:00 23:00 23:00 24 hr ummary: rojected oerations: Safety Issues: tud Cost: ud Cost: ud Cost:	Drill 1 Drill 1 No acc Stands	0 01 0 02 65 mm ho 65 mm ho idents. No I by Vessel is 36,732 37	Operation Operation Operation Operation Operation Curry Tang	50m - 575. See a control of the con	hrs, 8/05: dr	illing @ 5780 MW to 1830 daily pre-tour bandon ship of \$2,425	& safety of Cum Fo	meetings rm Eval rm Eval	Cost:		\$35,538	Cum D Total /	rilling Cost. opr: Roll,	Safety Rep:	Gilbert \$598,909 \$65,734,796
3:00 1:00 1:00 St. Pp Op	20:00 23:00 23:00 24 hr 24 hr unmary: rojected serstions: Safety Issues: ud Cost: ud Cost: ud Cost: ud Cost:	Drill 1 Drill 1 No acc Stands	0 01 0 02 65 mm ho 65 mm ho cidents. No 10 57 Vessel is 36,732 37 24,9	Operation Operation Operation Operation Operation Commission Commi	os @ 0600 2m - 5750 pollution si ron Sea. Heible Cost:	hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr	illing @ 578/ MWV to 183/ daily pre-tour bandon ship of \$2,425 4,169,561	& safety link. Daily Fo	mestings rm Eval rm Eval	Cost:	80.9	\$35,538 \$3,540,656 Rig Heave, m	Cum D	rilling Cost. opr: Roll, 0.2 deg	Safety Rep:	Gilbert \$598,909 \$65,734,796 \$79,476,760
3:00 1:00 1:00 1:00 Sulf Chewit Ge	20:00 23:00 23:00 24 hr 24 hr unmary: rojected serstions: Safety Issues: ud Cost: ud Cost: ud Cost: ud Cost:	23:00 24:00 24:00 Drill 1 Drill 1 No acc Standt	0 01 0 02 65 mm ho 65 mm ho cidents. No 10 57 Vessel is 36,732 37 24,9	Operation Operation Operation Operation Operation Curry Tang	s @ 0600 2m - 5750 pollution siron Sea. He ble Cost	hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr hrs, 8/05: dr	illing @ 5780 MW to 1830 daily pre-tour bandon ship of \$2,425	å safety init. Daily Fo	mestings rm Eval rm Eval	Cost:	80.9	\$35,538 \$3,540,656 Rig Heave, m 4320060450	Cum D Total / Pitch, 0.2 deg	ppr: Roll, 0.2 deg Robiches	Safety Rep:	Gilbert \$598,909 \$65,734,796

DW Millennium

EL 2359

Canada

Exploration

300H234320060450

Chevron et al Newburn H-23

Robichaux / Ruitenschild / Bruton / Liutkus

5-Aug-02

Chev	ron C	anada	Reso	urces			Chev	ron e	t al. Ne	wbu	m H-	23		Dri			eport (metric)
Measured	Depth:	***	5,81	10 m	TVD:	5,723 m	PSTD:				Propos	ed MD:		400 m	Propose	d TVD:	6,315 m
DOL:	78	C	PFS:	77	Spuc	d Date:	22-May-0	2 Dei	ly meters:			24 m	Daily Rot Hrs	:	5.5	HS Total Rot Hrs.	68.5
Torque: Nm	6101	Dreg: kdaN	6.7	Rot Wt: kdaN	223	P/U Weight: kdeN	230	S/O Wt: kdeN	22	22	Last BO	OP Test:	27-Jul	-02		POB:	124
Last Casir	ng Size:		mm	Set At:		,404 m	MD		4,402	m	TVD	Shoe Test, kg/m	1 ³ :	2041	Leakoff?	NO	
Cum Rot	Hrs on Car			1.0 Cu			e Last Caliper		151.0	Whips	ock Set	Q :				KOP:	4,110 m
Liner Size	:	197	mm	Set At:	5	5,403 m	MD		5,324	m	TVD	Liner Top At	4,	224 m		MD 4,2	24 m
Mud Co:				Тура:	Synthetic	hanned		Sample		Pits	Wt,	1837	FV. s/qt 12	6 CP	38	YP, Pa g	Gel, Pa 5/8
WL API, cc/30min		HTHP:		FC(mm) A			Solids:		% Syn			% Water:	SWE			MBT,	pH:
Psm:		ES, volts	3.2	mm Ca	rto:	1.6 Ct	Ca/Mg:	28.7	ASG:		52.0	Solids % HG/LG			74/26 24hr Avg		Vone dischared lest
Engr Sen	3.0			80 ls added las		34,0	00		—	4.	.10	L	2	7/1.7			24 hra
		2	24 hrs:			825 sx Bar	ite		18.7	m³ Ba	se oil						
Drig Gas:			Max G			Conn. Gas:		lTric	o Gas:			Trip Ct:		Rema	arks:		
				·.	0.38%		1.00			29 s, mm	.70	<u> </u>			,	· · · · · · · · · · · · · · · · · · ·	
Bit No.	IADC	Size		Manufactur	er S	Serial Number	Тур	<u>`</u>	No. Size		Size	TFA, mm²	MD	în .	-	MD Out	TVD Out
9	M432	165		SII		JS2444	MA3	2 3	15.9	0	0.0	594	5,786	3 m	 		
								_		٥	0.0				 		
meters	Но	urs	WOB, kdaN	RPM	I-Row	O-Row	DC		Loc		В	G	Chi	ar	<u> </u>	?Pull	Cost/meter
24	5.	50	2.2	250									<u> </u>				\$33,854.17
Total Len	igth of BH/	. . ,	393	.90 m	BHA Des	cription:	165mm	PDC Bi	t, A4758	A4560	XP Mo	tor (w/ 149mm	Sleeve), Fk	oat Sub	(w/ float),	162mm Stab, I	MPulse MWD,
APWD,	162mm S	stab, Filter	Sub, 9 x	121mm D	C's, XO, 18	x 102mm H	WDP, 121m	m Jars,	11 x 10	2mm 1	HWDP	Dist. From bit	to: D&I=14.	02; GR=	14.69; A	PWD=21.91	
		-:										155.5				,	
Bit Cost \$	Row 1	25,000	Row 2	!	Rig\$ 25	5,000 Time) m	C Size, n:	1	21	DP Size, mm:	102	ours On Jars:	68.5	Hrs Since Last I	nspection: 68.5
Bit	Lin	er, mm	Str	oke, meters	m³/STK	SPM	Press, KPa	liter/mi	in Je	t Vel, n	vsec	DP AV, m/min	DC AV, m/r	min B	K HHP	8HHP/mm²	Pump HHP
9		140		0.3556	0.0159	60	36956	952		26.7		72.0	95.0		15	300.15	786
												<u> </u>	<u> </u>	\perp			
	Survey M	D	An	gle	Direction	1	rvo		N/S Coo	rdinate		EW C	oordinate		Vertica	l Section, m	DLS, 130m
	5,738.60	m	3.9	58	318.61	5,65	1.18 m		248.	62		-38	9.29		46	1.85 m	1.64
	5,767.64	m	2.	73	337	5,68	0.18 m		249.	94		-39	0.16	_	46	3.28 m	1.35
	5,796.63	m	1.3	75	333.74	5,70	9.14 m		250.	.97		-39	0.62		46	4.22 m	1.02
Hrs.	(From -1	(o) hh:mm	Code									4 Hours Ending					
3:30	00:00	3:30					. M/U bit #9	and ner	w mud m	notor.	Attemp	ot to test. GR n	ot respondir	ng. L/D ii	mpulse to	ool & P/U new o	ne. Test. OK.
1:00	3:30 4:30	4:30			e to TIH w		30 etds. Circ	ulate ar	nd test M	WD 6	2612	m, 4200m, 480	Om and 538	Om.			
0:30	18:00	18:3					im. No fill on					· · · · · · · · · · · · · · · · · · ·					
5:30	18:30	24:0	0 02				P=4.36 m/h										
																	····
<u> </u>	├ ──			-									·				
 	 		+-														
	ļ																
<u> </u>	ļ		-	-													
 	┼			45.4.5													
	+		_	+													
				1 ₁₀ to 51													
<u> </u>	-		\perp	Operation	ons @ 0500	hrs, 8/07: D	rilling @ 584	2m (av	g ROP s	ince n	nidnigh	t = 5.64 m/hr)					
	+		+	+													
1	24 hr	Reco	ver MWD	data, M/U	new bit and	1 TIH. Drill fr	rom 5786m-	5810m									
S	ummary:																
	rojected	Contin	ue to dril	165mm h	ole.												
-	perations:	No	dda	lasida *	lo ocil d'	inhipan 14-1-	(daily are to	2 salar	, meeting							Accidents:	NAR
	Safety Issues:	-		s the m/v He		myrrumgs, 1960	daily pre-tou	a 3670()	, meetings							Safety Rep:	Gilbert
Daily M	ud Cost		36,103		ngible Cost		\$2,425	Daily F	orm Eval	Cost:		\$35,538	De	ily Drilling	g Cost		\$594,601
Cum M	ud Cost:		562,753	Cum Tar	gible Cost:	•	4,174,411	Cum F	orm Eval	Cost:		\$3,613,654	Cu	m Drilling	Cost		\$66,897,131
Chevro	n %:	+3,	37	1			,,	T					To	tel Appr:			\$79,476,760
Bulk G	al.			Cement,		Fue	3,64		lulk Wt,		251.8	Rig Heave, m		itch, leg 0.	Roll. 3 deg	0.5	
Country	r.		24.9	m³ anada		4.2 m³	3,64 DW MiBennis	Ü	M:			4320060450	Oriting Re	06:			/ Bruton / Liutkus
				- 10UO		1		59			Well:		ron et al Ner			Dete:	6-Aug-02

DW Millennium

EL 2359

Exploration

Robicheux / Ruitenechild / Alworth

7-Aug-02

Chevron et al Newburn H-23

B. 2359

Exploration

DW Millennium

EL 2359

300H234320060450

Chevron et al Newburn H-23

Robicheux / Ruite

Exploration

Chevron et al Newburn H-23

DW Millennium

EL 2359

Caneda

Exploration

300H234320060460

Chevron et al Newburn H-23

Robicheux / Rullemechild / Alworth

Exploration

Chevron et al Newburn H-23

30014234320080450

Exploration

Robicheux / Ruitenechild / Alworth

		anada	a Res	sourc						/ron	et al. N	lewb	_							Report (marks)
Measured	Depth:		6.0	70 m	TVD		5,5	983 m	PBTO:		5,332	ł m	Propos	sed MD:		6,400	m Pro	ровес	d TVO:	6,315 m
DOL	86	c	DFS:	85	$\overline{}$	Spud			22-May-0	. [Daily meter				Daily Ro				HS Total Rot Hre	
Torque:		Drag:		Rot Wt:			P/U W			3/0 W	VI:		Lest B	IOP Test:				7	PO8:	
Nm Lest Casi	n Size:	IndeN		kdaN Set At:			kdeN		MD	kdeN			TVO	Shoe Test, kg/m		7-Jul-02	Les	skoff?	-	128
			1 mm		Cum Rat F		,404 m				4,402		stock Set		л:	210	<u> </u>		NO KOP:	
Cum Rot I			8	12.5	JUM ROLL	Ars on	Carry) 3mc -		<i>x</i> .	82.5	****								4,110 m
Liner Size	:	197	7 mm	Set At:		5	5,403 m	1	мо		5,324	l m		Liner Top At:		4,224				224 m TVD
Mud Co:	M.I			Type:	Svri	thetic-b	hesed		_	Sampi	ole From:	Pits	Mr.	1897	FV. s/qt		PV.		YP. Pa 7	Gel. Pa 2/7
WL API,		нтир:			APVHTHE				Solids:		% 9y			% Water:		SWR:			MBT,	pH:
cc/30min Psm:		ES, volts	3.2		Carts	,	CI:	1.6	Ca/Mg:	31.	I.O ASG:		51.0	Solids % HG/LG	18.0	<u> </u>			Kg/L 0.00 SOC %:	No discharge lest
	3.6			471				32,000					4.20			29.64				24 hrs
Engr Serv	ice	2	Materia 24 hrs:	ials added : ::	iest		200 e	a 45.36kg	g bg berite											
Drig Gas:			Max Ge	86:			Conn.	Gas:		7	Trip Gas:			Trip CI:			Remarks:			
Bit No.	IADC	Size	+	Manufact		П	erial Nu		Турч	. 🕇		ets, mm		TFA, mm²	Т	MO in	\top		MD Out	TVD Out
J						一			 ""	\dashv	No. Sta	DO NO.	. Size		┼		+			
			—			╄			├ ─	\dashv		┼	┼—	├	┼		+			
						上			—	-		₩	Щ.	├ ──	┼		+			
meters	Но	an .	WOB, IrdeN	RPM	, н	Row	O.F	-	DC		Loc	\perp	В	G	<u> </u>	Cher			?Pull	Cost/meter
																				#VALUE!
				1	\top		Г			\Box							\Box		*-	
Total Len	gen of BH/	A:	-		BHA	Desc	ription:	:												
																				
Bit Cost	Row 1		Row 2	2	Rig\$			Trip		\neg	DC Size.			DP Size, mm:		Hours	On			·
<u> </u>			+		Av.		لــــ	Time,hr		1	mm:			—		Jan			Hrs Since Last	
Bit	Lin	er, mm	s	roke, meter	* m*/	VSTK	SP	M Pro	ess, KPa	titer/	/min J	let Vel, :	n/sec	DP AV, m/min	DC AV	/, m/mirl	Bit HH	1P	Bit Pineri	Pump HHP
	<u> </u>		丄		\perp		L	丄		上				<u> </u>	<u> </u>				<u> </u>	
								\Box		L									l	
	Survey MC	,	Ang	gle	Directi	ion	Γ	TVD	,	Γ	N/S Co	ordinate	,	E/W Cr	cordinate	,	v	ertical	l Section, m	DLS, °/30m
	***************************************									Г				1						
		$\overline{}$	·			_	\vdash			⇈				 		\neg				
		$\overline{}$		—			\vdash			\vdash				 						
Hrs.	/s	o) hh:mm	Code				Щ			ــــــــــــــــــــــــــــــــــــــ	Opera	-tons C	ina :	24 Hours Ending	at Midnic					
200	00:00	- 2:00			nue to TiH		ingr	-tinner						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
0:30	2:00	· 230							ner at 533	2m. Se	et down 26	3.7kdaN								
0:30	2:30	- 3:00			pre job saf															
2:00	3:00	- 5:00	19											with 18616KPa. P						
			工											ent with 41.6L He						
			—			-								se with 31.6m² of					ueeze cement	
1:00	500	- 6:00	19		retainer w				mud. Sa	ng out	of retainer	r. Pump	0.32m	of 1897kg/m² m	ud. Top	of cemers	@ 53Uz	m.		
2:30	5:00	- 8:30	-		ament nos			ROS.												
2:00	8:30	- 10:30			H to 4250m			int stand 1	to 4270m.										-	
0:30	10:30	- 11:00			pre-job saf															
1:00	11.00	- 12:00	0 19											spacer. Mix and p						
			工											1897kg/m³ tuned	l spacer.	Displace	28m³ of	1897	tg/m³ SBM to	
	L		+-					POOH 5	stds. Cem	ent plu	lug spotted	from 42	!70m to	4170m.						
3:30	12:00	- 14:30			H to 2633m												-			
0:30	18:00	- 18:30			pre-job saf		nesting													
5:30	18:30	- 0:00			H L/D 102			<u> </u>												
			工	NOTE	i: Prior to	estab	dishing	injection	rate for se	queezi	e job, cont	ducted 1	OT. LO	@ 197mm sho	e = 2101	kg/m². Pr	essure s	tabiliz	ed at 6757KPa.	
			工			_	_				DP while P							_		
	24 hr								228 50sx b	elow 1	197mm sho	oe. Spo	₹ 30m ca	sement plug on to	Ip. POOI	1 to 197n	um liner to	op at 4	4275m and	
-	mmery:			nent plug. F			_	_	- 741		01	**1	251e	nm retainer at 11				~~		
	ojected erations:										Skg/m² MW			III 1945				. 100 p.	-	
—	Safety	_		lo incident			10	DB. 5	B.0	,	Agr	****							Accidents:	NAR
	ISUES:			our & salety		s. Ster	ndby Vi	essel is th	ne m/v Hef	bron Sr	04.							_	Safety Rep:	Gilbert
Daily M.	d Cost:		8,940	Daily T	Tangible C	ost		\$6	8,167	Daily	y Form Eve	l Cost		\$9,121		Deily O	rilling Cos	et:		\$547,541
Cum Mu	d Cost	-	702,208	Cum T	Tangible Co	ost			250,563	Cum	n Form Eval	I Cost:	-	\$4,073,126		Cum Dr	illing Cos	it		\$72,000,795
Chevron	% :		37	+					-	十				V-R		Total A	opr:			\$79,476,760
Bulk Ge	i,			Cemen	NE.	*******		Fuel,			Bulk WL			Rig Heeve, m		Pitch.		ol.		V-2,
m³ Country:			24.9	w ₃		110	Ng.	m3	3,35		m³		33.1		0.3 Drilling	deg g Reps:	0.3 64		0.3	
			c	Zanede		-10-	1	DW	/ Millenniu	ım.			300H23 Weft:	34320080450	ــــــــــــــــــــــــــــــــــــــ			Jor	nes / Ruitenschill Date:	d / Alworth
Field:		Exete	oration			Loo			EL 235	40			1	Chev	arron et af	Newbun	1 H-23		1	14-Aug-02

Chevron et al Newburn H-23

DW Millenni

EL 2359

Exploration

30011234320080450

Chevron et al Newburn H-23

Jones / Ruitenechild / Alworth

Exploration

Chevron et al Newburn H-23

Canada

Exploration

DW Millennium

EL 2350

Chevron et al Newburn H-23

Chevron et al Newburn H-23

18-Aug-02

Canada

Exploration

EL 2359

300H234320080450

EL 2359

Exploration

Jones / Curran / Alworth

Exploration

Chevron et al Newburn H-23

Exploration

Chevron et al Newburn H-23

Exploration

Chevron et al Newburn H-23

Chevron et al Newburn H-23

23-Aug-02

Exploration

	on Ca	naga	neso	urces					vron	et al	Ne	wburi								report (motric
Measured	Oeptn:	16	co.		TVD:			PB10:			0 m		горов	ed MD:	Dail: C	at Mari		roposec	HS Total Rot Hr	
XOL.			FS:	95		Spud De		22-May-02	<u> </u>	Daily me	or early	,	act 52		Daily R	ut rife:			POB:	•
orque:		Drag: kdaN		Rot Wt: kdaN			U Weight: aN		S/O W kdaN	rt:		ľ	Last BC	OP Test:					POB:	92
ast Casin				Sel At:				МО						Shoe Test, kg/m	1		- 10	eekoff?	No	
Cum Rot h	Irs on Casin	ig:			Cum Rot F	tra on Ca	sing Since	Last Caliper				Whipsto	ck Set	•:					KOP:	
iner Size	:			Set At:				MO					TVD	Liner Top At:					МО	TVD
Aud Co:				Туре:					Sampl	le From	1:		Wt,		FV, s∕qt		PV, cP		YP. Pa	Gel, Pa
VL API,	F	MHP:			APVHTHP			Solide		1%	. Syn:		V	% Water:		SWR:			MBT,	pH:
o/30min	====	S, volts		mm	Carb:	Ci		Ce/Mg:		- ,	SG:			Solids % HG/LG	(L	[2		SOC %:	
ngr Serv	İ		Material											L						· · · · · · · · · · · · · · · · · · ·
			24 hrs:	3 40000																
						- 12								T- 0						
Orig Gas:			Max Ga	6			onn. Gast			Trip Gas	&			Trip Ct			Remark	8		
Bit No.	MDC	Size		Manufac	lurer	Seria	al Number	Туре		No.		s, mm No. S	Size	TFA, mm²		MO In			MD Out	TVD Out
			1						\neg	\neg							\neg			
			1						一	寸										i
meters	Hou		WOB,	RPM	1-F	low	O-Row		寸	Loc			3	G		Char			7Pull	Cost/meter
			kdaN	 	+	\dashv		-	-		-	 		 	\vdash		\dashv	Y		
				-	+				\dashv		-	-		-	-		\dashv			<u> </u>
Total Len	gth of BHA:			<u> </u>	BHA	Descript	tion:					L		I			_			L
Bit Cost	Row 1		Row 2		Rig\$,	Tri	p	Į.	DC Size	•,			DP Size, mm:		Hours	On .		Lum 01-	. h
\$					/14		Time	y,iv	للبر	mm:				ļ		Jar	3.		Hrs Since Last	
Bit	Line	r, mm	Stro	ke, mete	rs m³	STK	SPM	Press, KPa	liter/	min	Jet	t Vel, m	30C	DP AV, m/min	DC A	/, m/min	BRH	1HP	BH IP/mm²	Pump HHP
										\dashv					<u> </u>					_
														<u> </u>	<u> </u>				Ì	
	Survey MD		Ang	io .	Directi	ion	T	VD		N/S	Coor	rdinate		E/W Co	ordinate	•		Vertica	l Section, m	DLS, 9/30m
														<u> </u>						
									<u></u>					<u> </u>						
]												<u></u>			<u> </u>			l
Hra.	(From -To) hhrmm	- Code											4 Hours Ending a	t Midnig	M				
24:00	0:00	- 24:00		Rig in 1	ransit to (GoM. Co	mmence	changing out	tave	iling bi	ock.	Runnin	g 6 thr	rusters at 91%.						
	 -			 																
	<u> </u>		+-	 																
 	 		+	 																
	<u> </u>		1	†																
				Positio	n at 24:00	hrs Lat	: 35° 26.2	7', Long 70°	25.01°	. Head	ling 2	224°								
<u> </u>			ļ	+				peed 9.5 kts												
	 			+				average spe										-		
								boarding): 1				28, 2002	2							
			+	+				ation: 12:00 l								· · · · · · · · · · · · · · · · · · ·				
																		-		
					ntact Nun															
<u> </u>			-					hone), 504-5				740 00-		May						
 -			+-), 713-232-84 46-310 (voice						(IAX)						
 	 -		+	nimars	er (midge	y. U1 1-0		-S-O-10 (AOICE	y, U11	-0140		-10-011	(-44)							
<u> </u>			+-	Opera	ions @ 0	6:00 hrs	on Aug 2	5: Rig in tran	sit to (GoM. L	at 3	4° 45.8	, Long	71° 12.3'. Head	sing 224	4° (avera	ge spee	d since	midnight 9.1 k	ts).
	24 hr	Rig in tr	ansit to G	oM.																
Su	mmary:	<u> </u>																		
Projecte	d Operation	Kilg in tr	ransit to G	oM.																
\vdash	Safety	No incir	dents. No	accident	3.														Accidents	NAR
	SELECT SELECT		e-tour job			lures me	etings.												Safety Rep:	•
Daily Ma	d Cost:		\$0	Daily T	angible Co	et:		\$0	Daily	Form (Eval C	Cost:		\$0			rilling Co			\$449,691
Cum Mu	d Cost:		506,904	Cum T	angible Co	et:	2	5,634,802	Cum	Form E	Evel C	Cost		\$5,073,996		Cum D	rilling Co	et:		\$78,991,676
Chevron	%.		37	1							_					Total A				\$79,476,760
Bulk Ge	,			Cerner	1,	^^	Fuel.			Bulk W	/t,).0	Rig Heave, m		Plich, deg		Roll, deg		
m³ Country:			0.0	lm³ nada		0.0 F	gg m	2,81 W Millenniu		m³ UWt				4320060450	Drilling	Repe		-	Curran / Trea	dway
							L													

Exploration

Chevron et al Newburn H-23

25-Aug-02

Exploration

Measured	TOIT Ca	llaua	nesu	ui Ces					vro	n et a	II Ne	wbur								eport (metric)
	Depin.				TVO			PBTD:			0 m		Propos	ed MD:				, ropose		
DOL		0	FS	97	1	Spud (Date:	22-May-0	2	Овіту п	neters:				Daily R	ot Hrs:			HS Total Rot Hrs.	
Torque: Nm		Drag: kdaN		Rot Wt: kdaN	•		P/U Weight: kdaN		S/O \			T	Last Bo	OP Test:					POB:	~~
Last Casi		NUBIN		Set At:			KOEN	MŌ	KOEN				TVD	Shoe Test, kg/m).		IL	eakoff?		92
Cum Bot	Hre on Casing	· •		Ic	um Bot He	- on (Casing Since L	and Callbor				Whipeto			·			-	KOP:	
Ĺ				l														i		
Liner Size				Set At:				MD					TVD	Liner Top At:					MD	TVD
Mud Co:				Туре:					Sam	ple From	m:		Wt,		FV, ø/qt		PV. cP		YP, Pa	Gel, Pa
WL API,	н	THP:		FC(mm) /	APVHTHP:			Solida	L	ľ	% Syn			% Water.	-4.	SWR			MBT,	pH:
oo/30min Parn:		Sba		mm			A	<u> </u>			100			0.44.8.1101.0		<u> </u>			Kg/L	1
ram.	E.	S, volts			arb:	ľ	Ct	Ca/Mg:		ľ	ASG:			Solide % HG/LG			ľ	ALR AV	SOC %:	
Engr Sen	rice		Materials 24 hrs:	s added is	at															
			124.00	-																
Drig Gas:		-	Max Gar	K		- 10	Conn. Ges:			Trip Ga	88			Trip Ct:			Remark	*		
<u> </u>			- 					_			1.4			ļ						
Bit No.	IADC	Size		Manufactu	rer	Se	riel Number	Тур	•	No.		ı, mm ı No. S	Size	TFA, mm²		MD in			MD Out	TVD Out
			T							П										
			1		$\neg \neg$			1	_											
meters	Houn	. T	WOB,	RPM	I-Ro	T	0.0	1 20					<u> </u>			~~~			?Pull	0
	noun		kdaN			_	O-Row	DC		ما	تہ	E	<i>,</i>	<u> </u>	<u> </u>	Cher			/rus	Cost/meter
<u> </u>								ļ		<u> </u>					ļ					
										<u> </u>				<u></u>				- /		
Total Len	gth of BHA:	- 77			SHA	Descri	iption:													
Bit Cost	Row 1		Row 2		Rig\$		Trip			DC St	ZO,			DP Size, mm:		Hour	On		Hre Since Last I	
\$			┿		/hr	_	Time,h		_	mm:				<u> </u>		Jar			FIRS SECO CAR I	
Bit	Liner,	mm	Stroi	ke, meters	m#S	TK	SPM P	ress, KPa	Re	r/min	Jel	Vel, m	/sec	DP AV, m/min	DC A	/, m/min	Bar	HP	BH+P/mm²	Pump HHP
<u> </u>																				
	Survey MD		Angl	•	Directio	~	TVI			N/S	S Coor	dinate		E/W Cd	ordinate	•		Vertical	Section, m	DLS, */30m
						_			_											
				+					-											+
						┥			⊢					ļ						+
<u> </u>			T						<u> </u>											
Hrs.	(From -To)		Code									one Cov	ering 2	4 Hours Ending a	Midnig	Ht				· · · · · · · · · · · · · · · · · · ·
24:00	0:00 -	24:00		Rig in tra	ansit to Go	oM. C	Continue chan	ging out tr	avelli	ng bloc	ck.									
			 																	
				Daniman	-1.04.00				4 00	0.140. 1	1	- 00.49								
<u> </u>	<u> </u>		+-				at: 29°35.6 N (average spe			8 W. F	10801	ng 224				·				
 	 			<u> </u>			d: 1126 nm (<u> </u>	9 58 kt	e)									
 -			+-				Atwater Valle													
			+				oast Guard be					8, 2002	2							
			+				ey 261 Locati													
			+										, Lona:	86° 43): 05:00	hrs Au	pust 31.	2002			·····
<u> </u>			-					, ,,,,												
																		29 1		
				Rig Con	tact Numl	bers:														
<u></u>				Chevror	Texaco:	504-5	92-6393 (pho	ne), 504-5	92-63	381 (fa	x)									
ļ	<u> </u>						3409 (main),		<u></u> -					(fax)						
<u></u>			4	Inmarsa	t (bridge):	011-	874-335-748	-310 (voice), 01	1-874-	335-74	46-311	(fax)							
<u></u>	 			<u> </u>																
	 			Operation	ons 9 06:	00 hr	s on Aug 27:	Rig in trans	sit to	GoM.	Lat: 2	56.21	N', Lon	g 077° 46.4W'.	Headin	g 224° (a	verage	speed	since midnight 9	.1kts).
-	<u></u>	Die ie		<u></u>																
	24 hr mmany:	rug in tra	ansit to Go	ж.																
-	<u> </u>	Ric in I	ansit to Go	<u></u>																
Projecte	d Operations	, wg #1 t/a										-								
<u> </u>	Barlety	No incid	ents. No a	ccidente								-	-					-	Accidents	NAR
	SELECT SOLUTION		-tour job s			res m	neetings.												Safety Rep:	
Daily Mu	d Cost:				ngible Cost			•	Daily	y Form	Eval C	ost		•		Only D	rilling Co	et:	·	*424 067
Cum Mu	d Coet:		\$0	Cum Tar	ngible Cost	:		\$0	Cum	Form	Evel C	oet:		\$0	-	Cum Di	illing Co	et.		\$434,887
Chevron	%:	-	17,054	┼			\$5,6	539,652	┢					5,083,496		Total A	opr:			81,403,940
Bulk Gel		:	37	Cement,			Fuel		<u> </u>	Buk V	Mt.			Rig Heave, m		Plich,		Rol,		79,476,760
m³		0	0.0	m ³		0.0	m³	2,543	3.3	m³		0	.0			deg		300		
Country:			Can	ada			Riig: DW	/ Millenniu	m	UWI		30	OH234	1320060450	Dritting	Repe			Curran / Tread	way

Measured	Death:	naua	nesu	uices	TVD		PBTD:	VIOI	n et a	II NO	woul		ed MO:				ing		(eport (metric)
DOL:		- 15	<u></u>				PB1U.		D. 1	0 m		riopos	MU:	· ·					
			FS:	98	Spi	d Date:	22-May-0	2	Daily m	HOI OF S				Daily F	iot Hra:			HS Total Flot Hrs	£
Torque: Nm		Drag: kdaN		Rot Wt: kdaN		P/U Weigh kdaN		S/O V kdaN	Mt:			Last BC	OP Test:					POB:	92
Last Casi	ng Size:			Set Al:			MÖ					TVO	Shoe Test, kg/m	r ^a :		Li	eskoff?	No	
Cum Rot	Hrs on Casin	g:		Cı	ım Rot Hrs o	n Casing Sir	ce Last Caliper.				Whipst	ock Set	O :			<u>.</u>		KOP:	
Liner Size	Σ.			Set At:			MD				L	TVD	Liner Top At:					MD	TVD
				Туре:				Same	ole From	n:		WI,	<u> </u>	EV.		PV		YP.	Gel
Mud Co:								-				kg/m²		FV. øqt		PV, cP		Pa	Pa
WL API, co/30min	۲	THP:		FC(mm) A mm	PVHTHP:		Solids:		ľ	% Syn	T.		% Water:		SWR:			MBT, Kg/L	pH:
Psm:	E	S, volts		Ca	irto:	Ct	Ca/Mg:		7	ASG:			Solida % HG/LG):		24	4hr Avç	SOC %:	
Engr Ser	rice			s added las		1			L				L						
			24 hrs.																
Drig Gas:			Max Ga	•		Conn. Gar	r		Trip Ga	ısı.			Trip Ct			Remarks	r	· · · · · · · · · · · · · · · · · · ·	
								_											
Bit No.	IADC	Size		Manufactur	-	Serial Numb	и Тура	•	No.		a, mm No.:	Size	TFA, mm²		MD In			MD Out	TVD Out
																一			
meters	Hour	. T	WOB,	RPM	I-Row	O-Row	DC.		3	c		3	G		Cher			?Pull	Cost/meter
			kdeN	 	+	+	- 		-				 	-		\dashv			
				 	+	┼		-					ļ	-		-+			
Total Lan	gth of BHA:	I.		<u> </u>	BHA Dec	cription					<u> </u>		<u> </u>	<u> </u>					
<u> </u>																			
57.0	0		10						DO 0:-				100.0:		T ::			1	
Bit Cost \$	1		Flow 2		Plig\$ /hr		Trip ne,hr		DC Siz				DP Size, mm:		Hours Jan			Hrs Since Last	inspection:
Bit	Liner	, mm	Stro	ke, meters	mYSTX	SPM	Press, KPa	Rec	/min	Je	t Vel, m	/sec	DP AV, m/min	DC A	V, m/min	Bàt H	HP	BHHP/mm²	Pump HHP
			1		<u> </u>	1			\Box										
	Survey MD		Ang	•	Direction	-	TVD		NS	Cool	rdinate		E/W Co	ordinat	•	,	Vertica	l Section, m	DLS, %30m
	•					1		_								 			
						+		\vdash					 			 			1
				-+		+		-								 			
Hrs.	(From -To)	bh mm	Code	$\overline{}$					_	nerati	oos Cox	erina 2	4 Hours Ending a	t Mirinin	M	L			
18:00	0:00	18:00	1 333	Dio in tra	neit to Gold	Heading 2	24° to Warroin						e speed 9.6 kts						
6:00	18:00 -		+				ding change fro							·/·					
			-																
				Position a	at 24:00 hrs	Lat 26° 39	8 N, Long 079	° 25.6	8' W. H	eadir	ng 186°								
				Daily Pro	gress: 225	nm (average	speed 9.37 k	ts)											
	ļ		-				ım (average sp												
! -				 			/alley 261 Loca cation: 12:00 h				M2						-		
	 		+	 								Long	86° 43'): 05:00	hrs Au	oust 31	2002			
			+	E.A. Gu		or night coo.	auor (approxiii	idio p				. Long.			y aa. 0.,				
									_										
<u> </u>			1																
<u> </u>	ļ	-			act Number		(abasa)	00.00	104 4										
 	-		+				(phone), 504-5 n), 713-232-84				712-22	2,8410	(fax)						
<u> </u>	 		+				746-310 (voice						/-e-/						
			1	T								·							
				Operation	ns @ 06:00	hrs on Aug	28: Rig in trans	sit to	GoM. L	at 2	5° 52.1	N, Lor	ng 079° 30.8° W	. Headi	ng 186° (average	speed	since midnight	8.1 kts).
		,																	
	24 hr mmery:	Rig in tra	ensit to Go	M.															
<u> </u>		Di-																	
Projecte	d Operations	Luid iu pa	ensit to Go	JWA.															
<u> </u>	Safety	No incire	ents. No s	ccidents.														Accidente	NAR
	sarety Maudet				procedures	meetings.	Held rescue fro	m he	ights d	Irill.								Safety Rep:	- 1007
Daily Mu	d Cost:		5 0	Deily Tang			\$0		Form I		ost:		\$0		Daily Dr	rilling Coe	t	·	\$434,887
Cum Mu	d Cost:			Cum Tang	pible Cost:			Cum	Form 6	Evel C	out:		5,083,496		Cum Dr	illing Cost	t		
Chevron	%:		17,054 37	\vdash		-	\$5,639,652	\vdash					,vw,430		Total Ac	opr.			\$81,838,827 \$79,478,760
But Get				Cernent,		Fu			Bulk W	n,	-		Rig Heave, m		Pilch,		lol,		\$79,476,760
m ³ Country:		0	.0	m³	0	0 m³	2,414	1.4	m³ UWI:			.0	L	Drilling	deg Reps:		• 9		
1			Car	ada		1 -	DW Millennius	m l	l		30	OH234	1320060450	1				Curran / Tread	twev

		nada I	Resou	urces					vror	n et a	al Ne	wbu	rn H-2				Dri	lling	Activity	Report (metric)
Measured	Depth:				TVD			PBTD:			0 m		Propos	ed MD:				Propose	d TVD:	
DOL		DF	S	99	S	oud Date	0.	22-May-0		Daily r	neters:				Daily R	ot Hre:			HS Total Rot Hr	ĸ .
Torque: Nm		Drag: kdeN		Rot Wt: kdeN		P/U kde!	Weight N		S/O V	Vt:			Last BC	OP Teet:					POB:	92
Last Casir	g Size:			Set At:				MD					TVD	Shoe Test, kg/m	1			Leakoff?	No	
Cum Rot	irs on Casi	ng:		Cı	ım Rot Hra	on Cas	ing Since L	ast Caliper				Whipe	lock Set	0 :					KOP:	
Liner Size				Set Al:				MÓ					TVD	Liner Top At:					MO	TVD
Mud Co:				Туре:					Samp	ie Fro	MT.		Wt,		FV, øgt		PV. cP		YP, Pa	Gel, Pa
WL API, co/30min	ŀ	ITHP:		FC(mm) A	PVHTHP:			Solids:			% Syn	r		% Water:		SWR:			MBT,	pH:
Pam:		S, voits		mm C	rb:	CF		Ca/Mg:			ASG:			Solide % HG/LG	k	ł		24hr Avç	Kg/L SOC %:	
Engr Serv	ice		Materials	added les				.1												
-			24 hrs:																	
Drig Gas:			Max Gas	<u> </u>		Cor	n. Gas:			Trip G	las:			Trip Ct			Remar	ka:		
		0:-	 					т.		_	Jets	s, mm			Γ	100 1-	Ь,			750
Bit No.	IADC	Size		Menulactu	*	Serial	Number	Тур	•	No	o. Size	No.	Size	TFA, mm²	<u> </u>	MO in		<u></u>	MD Out	TVD Out
			-								<u> </u>	-	├							
			WOB.		1.5	Τ.		+	\dashv		L	-	<u></u>		 					0
meters	Hou	*	kdaN	RPM	I-Ro	<u>" '</u>	O-Row	000			oc	<u> </u>	В	G	<u> </u>	Char			?Pull	Cost/meter
				ļ		+		 	_			<u> </u>			├-					
Total Len	gith of BHA			L	BHA D	escriptio	on:					<u> </u>		<u> </u>				L		l
<u> </u>																				
ļ																				
Bit Cost	Row 1		Row 2		Rig\$		Trip			DC S	ize,			DP Size, mm:		Hour		-	Hrs Since Last	I benedice
S BR	l inc	r, mm	-	ke, meters	/hr m4S	- I v	Time,h	r Press, KPa	_	mm: /min	-	t Vel, n		DP AV, m/min	DC A	Ja / m/min		HHP	BH-IP/mm²	Pump HHP
- DX	LITA	M, (1811	SIRO	Ke, meters		+	SFM F	Tess, Kra	-	711361	-	V V V V	7-40	OF AV, IIII	T		-	- TATE	Dr w - / mm	ruipiw
 			+			+	-+		╁		-				├-				 	
	Survey MD	Т	Angi	<u> </u>	Direction	+	TVI	<u> </u>	├	- N	/S Coo	rdinate		E/W C	ordinate	•		Vertica	l Section, m	DLS, 9/30m
<u> </u>		-	•	\dashv		+			-											
-						+			┢					 			 			
-						+								<u>†</u>			_			
Hrs.	(From -To	o) hhumm	- Code	l					1	- (Operati	ions Co	vering 2	4 Hours Ending a	t Midnig	h				
15:15	0:00	- 15:15		Rig in tra	nsit to Go	M. Con	tinue on h	eading 206	5° to V	Vaypo	oint #3.									
8:45	15:15	- 24:00		Rig in tra	nsit to Go	M. Mak	e heading	change fr	om 20)6° to	250° a	t Way	point #3	J						
<u> </u>			┼	ļ																
 			+	├				····		,										
				Position	at 24:00 h	rs Lat	024° 13.9	N, Long: 0	81° 11	8.4' W	/. Head	ding 2	50°							
								eed 8.5 kt												
<u> </u>			+					average sp sy 261 Loc												
 	l		1					ion: 24:00				002						-		
<u> </u>	<u> </u>		 																	
-	 		+	Rig Cool	act Numb	ers:														
				+			-6393 (pho	one), 504-5	92-63	381 (f	ax)									
								713-232-8-						(fax)						
<u> </u>			1	Inmarsa	(bridge):	011-87	4-335-746	-310 (voice	e), O1	1-874	-335-7	746-31	1 (fax)				<u> </u>			
 	1-		+	Operation	ns @ ns-	00 hrs 1	on Aug 20-	Rig in tran	sit to	GoM	Lat 0	124° 10	.0' N. 1	ona: 082° 19.9°	W. Hes	dina 271)° (2ve	age sos	ed since midni	ght 9.5 kts).
	<u>t</u>			 										Central Time.						
	24 hr	Rig in tra	nsit to G	oM. Contin	rue rig ma	intenar	nce.													
*	mmery:																			
Projecte	d Operation	Hold to As	ensit to G	OM.																
	Salety	No incide	ents. No a	accidents.															Accidents:	NAR
		Held pre	-tour job :	safety and			tings.			_						18			Safety Rep:	•
Cally M			5 0		gible Cost			\$0	L		Evel (\$0		Deally C				\$434,887
Cum M		\$3,5	17,054	Cum Tan	gible Cost:		\$ 5,	639,652	Cur	- Ропт	n Evel (-oet:		\$5,083,496		Total A	rilling C			\$82,273,714
Chevror Bulk Ge			37	Correct			le:		L	Bulk	w.			Rig Heeve, m		Pitch.	-	Rol,		\$79,476,760
m³		0	.0	Cement, m ³		0.0	Fuel, m ³	2,25	9.8	m³			0.0	Corp. Comments, III	IS ***	deg		deg		
Country	_		Cer	nada		F	g: INV	V Millennik	.	UWI	:	9	100H23	4320060450	Drilling	Repe:			Curran / Trea	udway

Exploration

Chevron et al Newburn H-23

		ınada	Reso	urces					Che	vror	1 et a	ai Ne	wbu	n H-2	23			Drilli	ng	Activity R	eport (metric
Measured	Depth				7	VD			PBTD:			0 m		Propos	ed MD:			Pro	pose	d TVD:	
DOL.		0	FS	400		Spud	Date:				Daily r	nelers:				Daily F	lot Hra:			HS Total Rot Hra:	
Torque:		Drag.		100 Rot Wt:			P/U W	eight.	22-May-0	2 J S/O V	Vt:			Last BC	OP Teet:	Ь			-	POB:	
Nm		kdaN		kdaN			kdaN			kdeN											92
Last Casir	ng Size:			Set At:					MO					TVD	Shoe Test, kg/m	3.		Los	koff?	No	
Cum Rot	Irs on Casi	ng:			Cum R	ot Hre on	Casin	Since La	st Caliper				Whipst	ock Set	O :					KOP:	
Liner Size	: -			Set At:					MD				<u> </u>	TVD	Liner Top At:					MO	TVD
										6											
Mud Co:				Туре:						Samp	le Fro	нть		Wt.		FV. ø∕qt	- 1	PV, cP		YP. Pa	Gel, Pa
WL API	Į.	ITHP:		FC(mm)	APVH1	THP:			Solids:			% Syn			% Water.		SWR:			MBT,	pH:
cc/30min Psm:		S, volts		mm	Carb:		ΟL		Ca/Mg:			ASG:			Solide % HG/LG		<u> </u>			Kg/L	
rani.	ľ	:3, VORB			Carb.	ı	CI:		Ca/Mg:			ASG.			SORGE 76 PICYLIC	i:		240	A VAČ	SOC %:	
Engr Serv	ice			is added i	ast	•															
			24 hrs:																		
04-0			E:																		
Drig Gas:			Max Ga	18.		ĺ	Conn.	Gas:		- 1	Trip G	18.5			Trip Ct		l	Remarks:			
Bit No.	IADC	Size	7	Manufac	turar	T 6	rial N	mber	Тур	. 1			s, mm		TFA, mm²	T	MD In			MD Out	TVD Out
			┥			<u> </u>			1,75		No	o. Size	No.	Size		<u> </u>					
			1																		
meters	Hou	. 1	WOB.	RPM	T	I-Row	۵.	Row	DC		1	oc .		В	G		Cher			?Pull	Cost/meter
			kdaN	1			_		1				ļ								
				<u> </u>									<u> </u>					L			
		- 1																			
Total Len	gth of BHA				В	HA Descr	iption						•								
Bit Cost \$	Row 1		Flow 2		F S	lig\$		Trip Time,hr			DC S	ize,			DP Size, mm:		Hours			Hra Since Last I	nepection:
Bit	Lin	r, mm	Ste	oke, mete	_	mYSTK	SF		esa, KPa	_	/min	T	t Vel, m	/oec	DP AV, m/min	DC A		Bit HH	p	84 # 4P/mem²	Pump HHP
		-,		,	"	117511	-	<u></u>			*****				DI AV.,11011111	1		- CALLET		Oran Ameri	- raipitt
												L_									
							ŀ			l		l .				1				1	1
	Survey MC		Ang	yle ek	Din	ection		TVD			N	S Coo	rdinate		E/W Cd	ordinat	•	V	ertica	l Section, m	DLS, 9/30m
		_					\vdash			\vdash											
					<u> </u>		_			├-											
										1											
		1													•						
Hrs.	(From -To) hh;mm	- Code	Ī	•							Operati	ions Co	rening 2	4 Hours Ending a	t Midniç	м				
1:00	0:00	- 01:00	_	Dio io I	maeit I	to Gold (250	- W	aveni	nt #4	Note: ('hanna	ship's time from	- Easte	m Time t	n Central	Time		
1:45		- 01:45							hange 🗣							Case	MIL 18110 1	O Contrar	1 10170	.	
7:45		- 09:30		_											point #5. Enrou		andaa Ba	-les 977			
1:30		- 11:00													i					name	
4:00		- 15:00													261. Make cour						
	11:00			+											485. Make cour						
2:00		- 17:00		+											877. Make cour		nge 🛭 17	7:00 from	296	to 288°.	
7:00	17:00	- 24:00	<u>'</u>	Rig in 1	transit 1	to GoM. (Contin	ue on co	urse 288	to rig	relea	se loc	ation e	nroute	to Garden Bank	s 877.					
			-												· · · · · · · · · · · · · · · · · · ·						
	.		-	+					I, Long: 0		9.2° W	/. Cou	rse 280	<u> </u>							
			-						ed 9.08 k												
			-						verage s												
	!														Long: 091° 55.0						
<u> </u>	1			ETA R	ig Rele	ase Loca	ation (Calculate	ed Rig Re	lease	Posit	ion - L	at: 026	40.0	N, Long: 090° 2	4.0' W	- Walker	Ridge 297	7: 12	:00 hrs August 3	1, 2002
				ETA K	MG Ga	arden Bar	nks 87	77 Locatio	on: 22:00	hrs A	ugust	31, 20	002								
				Rig Co	ntact N	Numbers	(dish	currently	unrepaira	ble, K	(U ba	nd will	be do	vn until	rig on location):						
				Inmars	at (bric	dge): 011	-874-	335-746-3	310 (voice	e), 01	1-874	-335-7	746-311	(fax)							
				Opera	tions G	06:00 h	rs on	Aug 30: F	Rig in tran	sit to	GoM.	Lat 0	25° 18	6' N, L	ong: 085° 45.5°	W. Co.	⊮se 288°	(average	spee	d since midnight	7.3 kts).
				Note: (Change	ed ship's	time :	at 01:00 h	vrs Augus	t 29, 2	2002 1	rom E	astem	Time to	Central Time,	25 hou	rs recorde	d on toda	nys n	aport.	
	24 hr	Rig in tr	ansit to G	oM. Con	tinue r	ig mainte	nanc	9.													
	mmary:																				
		Rig in tr	ansit to G	ioM.			_			_											
Projecte	d Operation	*																			
	Safety	No incir	ients. No	accident			-													Accidents	NAD.
	sarety BOUGE				_	cedures r														Safety Rep:	NAR
Daily Mu	d Cost:				angible		. rosul			Daily	/ Form	Eval (Cost:				Daily Dr	iling Cost			
Cum Mu			\$0		-				\$0	1		Eval C			\$0			-			\$434,887
L		\$3,5	17,054	Cum T	angible	COSE		\$5,6	39,652		om	· EVEN (~ ~~		5,083,496		.].	illing Cost:			82,708,601
Chevron	% :		37														Total Ap	рг.			79,476,760
Bulk Go				Cerner	ıt,			Fuel		_	Buk	Ŵί,			Rig Heave, m		Pitch,	Ro			
m ³ Country:			0.0	m³		0.0	(Flig:	m³	2,11	5.8	m³).0	<u> </u>	D	deg Reper	de	9		
1			•				1.14				LAME		•	~~~	1220060460	L					

West

Exploration

		ınada f	Resor	urces					vron	et al Ne								Report (metric)
lessured	Depth:				TVD			PBTD:		0 m		roposed	MO:			Propor	ed TVD:	
OL.		DF	FS	101		Spud Da	ate.	22-May-0	, [Daily metera:				Daily Ro	t Hrs.		HS Total Rot Hn	ĸ
orque:		Drag		Flot Wt.			U Weight	EE-Wiley -	S/O W	/t:	u	ast BOP	' Test:	L			POB:	
rn ast Casin	n Size:	kdaN		kdaN Set At:		kdi	le N	MO	kdaN			VD Is	hoe Teel, kg/m	1.		Leako	1	92
	ing Octo.				9at l	· C:		Last Caliper.			Whipstoc			Π			No IKOP:	
		•			Jum not n	ins on Ca	any ance t			` .								
iner Size:				Set At:				MO				VD Li	iner Top At:				MD	TVD
Aud Co:				Туре:					Sampl	le From:	W	Vt, g/m²		FV.	F	PV.	YP, Pa	Gel, Pa
VL API,	F	ITHP:		FC(mm)	APVHTHP	> ;		Solida	<u> </u>	% Syr			6 Water:		SWR:		MBT,	pH:
o/30min Parm:		S, volts		mm	Cerb:	Ct		Ca/Mg:		ASG:			Solide % HG/LG	لـــــ		124hr A	Kg/L wg SOC %:	
														·			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Engr Serv	ice		Materials 24 hrs:	is added is	ust											100		
Orlg Gas:			Max Gar	18:		C	onn. Gas:			Trip Gas:		Tr	nip Ct		f	Remarks:		
Bit No.	IADC	Size	+-	Manufact		T Soot	al Number	Tre	_		la, mm	\dashv	TFA, mm²	T	MO In		MD Out	TVD Ou
BE NO.			—	Manuel	urer .	2616	il Number	Тур	-	No. Size	e No. Sta	20	IPA, mar	<u> </u>	MU		MD COA	17000
			Щ			ـــــ			_		$\bot \bot$							
						<u> </u>			_		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	\dashv		<u> </u>				
meters	Hou	rs	WOB, kdaN	RPM	1-F	Row	O-Row	DC	;	Loc	В		G	l _	Char	11 Sec. 11	?Pull	Cost/meter
						\top		\top	\neg			\neg						
			ŧ	 	_	\neg		+-	_		 	\top		_				
Total Len	gth of BHA:	. 19		<u></u>	BHA	Descript	tion				<u> </u>							<u> </u>
																		
Bit Cost	Row 1		Row 2	,	Rig\$		Trip			DC Size,		IC	OP Size, mm:		Hours	∩n	T	
\$			1.7		/hr		Time,			mm:					Jan		Hrs Since Last	Inspection
Bit	Line	er, mm	Stro	oke, meter	rs m ^a r	VSTK	SPM F	Press, KPa	iter/	/min Je	st Vel, m/s	190	DP AV, m/min	DC AV	, m/min	Sit HIHP	BI-#-IP/mm²	Pump HHP
	· _								Γ_{-}	\prod_{-}		-1						
	-		1			\Box				\Box		T						
	Survey MD		Ang	Jie I	Directi	ion	ΤV	/D	\top	N/S Coo	ordinate	一	E/W Co	oordinate		Verti	ical Section, m	DLS, 9/30m
						+			\vdash			\dashv						
		$\overline{}$		$\overline{}$		-+			+			\dashv					· · · · · · · · · · · · · · · · · · ·	
						\dashv			╫			\dashv			-+			
	T = -		T	 -														
Hrs.	(From -To		Code	<u> </u>									Hours Ending at					
24:00	0:00	- 24:00	+	Rig in t	ansit to C	SOM. CO	ntinue on c	course 288	to ng	release loc	:abon (en	noute to	o KMG Garder	n Banks	8// IOCa	ilion).		
 			+	+-														
\vdash			+-	+										-		····		
			+	1														
	·		\top	†														
<u> </u>			1					N, Long: 08	19° 02.	O' W. Cour	se 288°							
			4				speed 9.6 k											
	ļ							(average s										
 	 												ong: 091° 55.0		0001	no: 090n 2	4.0' W - Walker R	idea 2071: 75 am
	 		+														08:00 hrs August	
	 		+		·			ation: 18:00				10.0 14,	, cong. 000 E	7.0 11			00.00 IIIO ALGOS.	01,2002
	1		+-															
				Rig Co	ntact Nur	mbers (d	ish current	ty unrepairs	able, K	(U band will	l be down	until ri	ig on location):	:				
				inmars	at (bridge	a): 011-8	74-335-74	6-310 (voic	e), 011	1-874-335-7	746-311 ((fax)						
	ļ			-			•					/ N, Lon	ng: 090° 03.0'	W. Cour	se 288° (average sp	eed since midnig	nt 11.6 kts).
<u> </u>	<u> </u>							t & Canadia	ru clew	to Doreen	McCall.							
	24 hr immary:	Rig in tra	ansit to G	ioM. Con	tinue rig r	naintena	Ince.											
_		Dia is to	aneit to C	old ST	rio mine	en looni	ion (Molko	- Bidon 201	7. 00:2	O box Augus	-1 21 20Y	02 Off	neiniemen hee	CTen	ioment A	Canadian	Crow Survey hull	k inventory & releas
Projecte	d Operation	X	err McGee		ily rolla	Se local	On (Walker	i niuge 297) 09.3	U INS AUGU	31 31, 200	Je. Olik	000 10112011111	10.040			Diem. Golfey Goal	t arrestary a restar
	Safety		dents. No														Accidents:	NAR
	20.00K		e-tour job			dures mr	eetings.								-		Sefety Rep:	
Daily Mu	d Cost.		\$0	Daily T	angible Co	pet:		\$0	Daily	Form Eval	Cost:		\$0		Deily Dri	fing Cost:		\$434,887
Cum Mu	rd Cost:		17,054	Cum T	angible Co	ret:		5,639,652	Cum	Form Eval	Cost		5,083,496		Cum Ori	ling Cost:		\$83,143,488
Chevron	%:			+				1,009,002	+-				1,000,400		Total Ap	pr.		\$79,476,760
Bulk Gel	(37	Cemen	 	—	Fuel.			Bulk Wt.			Rig Heave, m		Pitch,	Roll,		J. 0,-10,100
m ³ Country:		0	0.0	m³		0.0	m³	1,99	7.4	m³ UWI:	0.0	<u> </u>		Drilling	Rener	deg		
			_	enede		ľ	Rig:	M Milloroi	!	12	201	0LJ2247	320060450	1			Curren / Tree	

Exploration

Chevron et al Newburn H-23

Exploration

Appendix C Hole Section Summary

Appendix C Hole Section Summary

Chevron et al Newburn H-23 Hole Section Summary

1067mm Hole / 914mm Casing (1001.6-1100m)

The Deepwater Millennium spud the Chevron et al Newburn H-23 well at 00:30 hrs on May 22nd, 2002 in 977.2 m of water. The well was drilled from 1001.6m (KB-ML) to 1056.7m with increasing deviation (2.85 degrees at 1043m). The decision was made to abandon this first well due to excessive deviation. The Deepwater Millennium was moved 40m to the North and the well respudded.

The Chevron et al Newburn H-23 well was respud at 12:30 hrs. May 22nd, 2002. A 1067mm hole was jetted with the drilling BHA to approximately 13m BML in order to ensure vertical hole. A hard layer was encountered at 1014m and the drilling BHA had to be rotated to make further progress. The 1067mm hole was drilled with controlled rpm (20-25 rpm) and minimal WOB (0-2 klbs) to maintain a vertical hole. Viscous sweeps were pumped every 8m drilled to clean the hole. Inclination surveys with MWD were also taken every 8m. The 1067mm hole reached total depth of 1100m at 05:00 hrs May 23rd after 14.5 rotating hours. The hole was displaced to 12 ppg pad mud and a wiper trip to the mud line made. The hole was circulated again over to 12 ppg pad mud and the BHA pulled to run casing.

Six joints of 914mm casing were run complete with 914mm LPWH and 127mm inner cementing string. The bottom of cementing stinger was placed 18.9m from the casing shoe. It was discovered that the inner skirt of the ABB Vetco LPWH Running tool did not cover and isolate the 4 circulating ports on the LPWH. To rectify this, four 8" nipples with 4" ball valves were installed and closed on the circulating ports prior to running the casing below the waterline. The casing string was run and landed at 1093m on a 168mm, 40.9 ppf landing string.

The 914mm casing was cemented in place with 452 bbls of Lafarge Class "G" cement with 0.23 gal/sk CaCl2 @ 15.9 ppg (200% excess). Cement returns were noted after 169 bbls of cement was pumped. Based on good cement returns to surface the contingency to grout the casing (top up job) was cancelled. The casing was supported with the landing string for a 13 hr period before releasing the running tool. The planned WOC time was 12 hrs. The WOC time was extended due to the ROV's failure to cut the grouting hose with a grinding wheel on the first attempt. There was no indication of casing subsidence after releasing from the 914mm structural pipe.

660mm Hole / 508mm Casing (1100-1917m)

The 660mm BHA (including 660mm Security XT-1C Tooth Bit and 241mm GT Motor set at 1.15 deg) was made up and RIH. The top of cement in the 914mm pipe was tagged at 1087m (5m cement inside shoe as per plan). The 660mm hole was drilled from 1100m to 1917m in 36 rotating hours at an AROP of 23 m/hr. Difficulty with observing mud returns at the wellhead required numerous drilling shutdowns to allow visibility at the mudline to improve so the ROV could monitor possible shallow flows. Visibility problems were attributed to tidal shifts. Wiper trips were performed during periods of reduced ROV visibility to check hole conditions. Every stand was backreamed and a 100 bbl high viscosity sweep was pumped prior to connections while drilling. A tight section requiring additional torque and backreaming was experienced from 1631m to 1638m.

At the 660mm hole section TD of 1917m a 250 bbl high viscosity sweep was circulated out of the well. A 65 bbl heavy weight pill (16.5 ppg) was spotted on bottom and the well displaced to 12 ppg pad mud prior to the wiper trip to the 914mm shoe. Numerous tight spots were noted on the wiper trip requiring washing and reaming. Back on bottom a second – 250 bbl high viscosity sweep was pumped out of the hole, a 65 bbl, 16.5 ppg pill spotted on bottom and the rest of the well displaced to 12 ppg pad mud. The hole was in good shape POOH to run 508mm casing.

The ROV noted excessive inclination on the bullseye mounted to the 914mm Housing extension. To confirm this inclination reading the 914mm Vetco CART tool was made up and RIH with a drillpipe mounted bullseye and a MWD tool at 18:00, May 28, 2002. This run indicated the Structural pipe had not moved and that the bullseye mounted to the 914mm Housing extension was reading improperly, potentially due to the shifting of a shim.

The 508mm casing was run (72 jts – 508mm, 169 ppf, X-56, RL-4S) on the 168mm, 40.9 ppf landing string complete with 127mm inner cementing string. The HPWH was run with the NSP in place. The bottom of cementing stringer was placed 36.8m from the casing shoe. The 508mm casing was landed at 1902m (15m overhole) and cemented in place by Halliburton. The casing was cemented using 5450 sxs (1096 bbls) of 1550 kg/m3 lead foamed Lafarge Class "G" cement +0.8 gal/sk Zonesealant 2000 mixed with drill water and 1355 sxs (280 bbls) of 1900kg/m3 tail of Lafarge Class "G" cement + 0.23 gal/sk CaCl2 mixed with seawater. This equates to 100% of annular volume. An estimated 1373 sks of cement were circulated to the mudline.

Following cementing, the HPWH CART tool was released and the running string/ inner cementing string pulled to surface. The HPWH was washed on the trip out with the inner cementing string. The rig was then moved 150m off location to prepare to run the BOP stack.

Run BOP / Riser

The BOP stack was stump tested to 12,000 psi and function tested prior to running subsea. BOP running operations commenced at 16:00 hrs on May 30th, 2002. The BOP and 12 joints of riser were run by 05:30 hrs May 31st, 2002. The hose used to fill the choke line with seawater while running the BOP was inadvertently dropped down the choke line. The hose separated at the crow's foot connection and 1.5m of 1" hose was dropped. This necessitated pulling 12 joints of riser to recover the hose at the kick-out on top of the coflex hose connection at the LMRP.

The BOP stack and riser was rerun. The choke and kill lines were pressure tested to 12,000 psi, and the boost line, rigid conduit lines to 5000 psi after picking up riser jt #1, riser jt #18 and riser jt #35. The lower boost coflex hose on the intermediate flex joint was changed out. The choke and kill lines were pressure tested again after making up the KT Ring to the slip joint. The BOP was landed and latched to the HPWH at 16:00 hrs June 1st, 2002 (48 hrs from starting riser running operations, including 16.5 hrs trouble time).

Following running of the BOP stack and latch up, an attempt was made to pressure test the 508mm casing/blind shear rams/wellhead connector to 1800 psi with water. This was not possible without unacceptable bleed-offs. Approximately 1200 bbls of 10 ppg WBM was mixed while pressure testing the BOP stack with the Vetco BOPITT to 250/12000psi for 10 minutes. A mule shoe was run on 168mm drillpipe to the top of cement inside 508mm casing at 1891m (11m from float shoe). The casing was circulated over to the 10 ppg WBM. The circulating string was pulled above the BOP stack and the blind shear rams closed. The 508mm casing and Blind Shear rams were then successfully pressure tested to 1800 psi. (Lost time to retest 508mm casing 11.5 hrs). The circulating string was then recovered from the well.

432mm Hole / 346mm Casing (1917-3515m)

The 432mm BHA (432mm Smith S91VPX PDC Bit & straight – slick A962XP 5/6 Motor) was run and drilled out the 508mm casing shoe and 2m of new hole prior to performing an FIT to 10.9 ppg. Prior to drilling out the casing shoe the well was displaced over to 9.1 ppg Paradril SBM. The 432mm hole was drilled from 1917m to 3515m in 119 hrs with an AROP of 13.4 m/hr. Penetration rate was controlled due to ongoing problems with Swaco Duster cuttings dryer plugging up. Total downtime due to cuttings dryer/auger problems was 39.5 hrs, not including lost ROP efficiency.

The Paradril SBM was weighted up as per mud weight schedule (9.6 ppg at 1950m and 10.2 ppg at 2475m). A wiper trip was performed at 2476m to check hole conditions. No problems or tight hole reported. A weekly scheduled function test of BOP equipment was performed.

The 432mm hole reached section TD at 12:30 hrs June 11th with a final mud weight of 10.3 ppg and the bit was dull graded as (2-1-CT-N-X-I-NO-TD). A short trip to 2500m was performed prior to the drilling BHA being pulled from the well and Schlumberger rigging up to perform three logging descents. Logging run #1: Quad Combo, logging run #2: VSP, and logging run #3: rotary sidewall cores (100% recovery - 25 of 25 cores).

Prior to running casing, RIH with a wash tool and WBRRT to wash the BOP and SSWH and recovered the NSP. The 346mm casing was run (195jts -346mm, 88.2lb/ft, P-110, TC-II) on the 168mm, 40.9 ppf landing string. The casing was landed at 3501m (14m overhole) and cemented in place by Halliburton. The casing was cemented using 1330 sks (474bbls) of 12.9ppg lead cement + 3.3% BWOC prehydrated gel, 0.14gal/sk Halad-344L, 0.11gal/sk SCR100L and 500 sks (102bbls) of 15.9ppg tail cement + 0.16gal/sk Halad-344L, 0.08gal/sk SCR100L. This equates to 10% in excess of the caliper volume. Began losing returns while circulating the casing prior to cementing, an estimated 1100 bbls of SBM was lost to the formation during cementing and displacement operations. Displaced cement with the rig pumps to theoretical top of float collar, plug did not bump. Pumped an additional volume equal to half of the shoe track and shut down. Set the packoff and tested same to 5400psi. Released the running tool and POOH. RIH with wash tool and WBRRT and washed SSWH and set the wear bushing. Tested BSR's and the casing to 250/5400 psi for 15 minutes. TIH with ITT and tested BOP's to 250/5500psi for 5 minutes.

311mm Hole / 251mm Casing (3515-4418m)

The 311mm BHA (311mm Hycalog RS163 PDC Bit & Powerdrive Rotary Steerable BHA, ARC 900 and ISonic LWD) was run and tagged the top of cement at 3447m, 17m high or 8.3bbls short of bumping the plug. The 346mm casing shoe was drilled out and 3m of new hole prior to performing an FIT to 13.5 ppg with 10.3ppg mud in the wellbore.

The 311mm hole was drilled from 3515-4366m, to an inclination of 7 degrees, in 51 hrs with an AROP of 16.7 m/hr. The wellbore was kicked off at 4110m, 100m high, as a result of the 432mm VSP log interpretation indicating increased transit times, which resulted in a +/- 200m upwards shift in the expected formation tops. The required build up rates of the programmed S-curve profile were increased from 1deg/100ft to 2.8deg/100ft to meet target objectives. There was also a correction to the pore pressure prediction which resulted in changes to the weight up schedule. The Paradril SBM was weighted up as per the new mud weight schedule (10.5ppg at 3860m and 10.9 at 4052m).

A drilling break occurred while drilling in a suspected fractured limestone section at 4366m. The well was flow checked and circulated bottoms up. The background gas increased from 1.5% to 15% while circulating. Weighted up to 11.4ppg as per the weight up schedule, background gas remained high at +/-5%. The mud weight was then increased to 12.3ppg in 4 stages, while simulating connections to determine the required overbalance. The background gas was reduced to 1.1% at 12.3ppg. A 3 stand short trip was attempted, but the hole would not take the required fill up volume. TIH and circulated bottoms up and raised the mud weight to 12.5ppg. (Total of 30hrs spent weighting up the system to 12.5ppg and conditioning the mud)

The well was drilled ahead at a controlled, reduced penetration rate from 4366-4418m with 1.1% background gas and an AROP of 9.5m/hr. While drilling, the resistivity values steadily decreased and there was an increase in torque and interpreted formation drillability indicating that the well had penetrated a transition zone of significant pore pressure increase. Knowledge Systems Inc. estimated the pore pressure at 4400m to be 12.3ppg. The hole section was TD'd at 4418m as a result of fracture gradient limitations. The 311mm hole section reached TD at 23:00 hrs June 22nd, 2002. the wellbore inclination at the 311mm TD was 10.8 degrees and the actual build rates realized were +/-1 deg/30m approximately half way through the build section.

The mud weight was increased to 12.7ppg in preparation for the logging program. An attempt was made to short trip into the casing prior to logging but the well would not take the correct fill up volume. TIH and circulated bottoms up with the maximum gas level at 4%. Attempted to short trip a second time, but again

the well would not take the correct fill up volume. TIH again and circulated bottoms up, maximum gas level at 4%. The decision was made to backream and circulate out of the hole to the casing shoe in order to keep the well from swabbing in the open hole.

Backreamed and to the casing shoe and then POOH to log the 311mm hole section. Logging run #1: AIT-DSI-LDT-CNL-MGS-EMS, logging run #2: MDT (failed - could not get a proper seat on the formation at various depths), logging run #3: OBMI-GR. TIH for a conditioning trip prior to the final logging run in order to evaluate the amount of gas that was in the wellbore. Washed the last 10 stands to bottom, flow checking on every connection. Maximum gas level while washing to bottom was 42.5%. Conditioned the mud and spotted a 16ppg pill on bottom. Backreamed to the casing shoe and POOH for the 4th logging run. Logging run #4: rotary sidewall cores (96% recovery – 24 of 25 cores). The logging data revealed that the suspected fractured limestone at 4366m that required the mud weight to be increased to 12.5ppg was actually calcareous sandstone.

Prior to running casing, RIH with a wash tool and WBRRT to wash the BOP and SSWH and recovered the wear bushing. The 251mm casing was run (251jts -251mm, 62.8lb/ft, P-110/C-110, VAM TOP) on the 168mm, 40.9 ppf landing string. The casing was landed at 4404m (14m overhole) with the MS700 Fullbore 251mm casing hanger and cemented in place by Halliburton. The casing was cemented using 575 sks (117bbl) of 15.6ppg lead Lafarge Class "G" cement + 35%SSA + 0.2% Super CBL + 0.18 gal/sk Halad-344L, 0.07 gal/sk SCR100L mixed at 15.6ppg and 100 sks (20 bbls) of 15.6ppg tail Lafarge Class "G" cement + 35% SSA 0.18 gal/sk Halad-344L, 0.07 gal/sk SCR-100L mixed at 15.6ppg. Full returns were achieved while running and cementing the 251mm casing in place. Displaced the cement with the rig pumps to theoretical top of float collar, plug did not bump. Pumped an additional volume equal to half of the shoe track and shut down.

Set packoff and attempted to test same to 8000psi. The pressure bled off and returns were observed up the drill pipe. Released the running tool and POOH. Lead indication showed full seal set. RIH with wash tool and WBRRT and washed SSWH and set the wear bushing. Re-tested the seal to 8000psi and bled of 85psi in 5 minutes, observed slight returns up the drill pipe. RIH and test BOP's to 250/8000psi with ITT for 10 minutes as per the CNSOPB Drilling Regulations. Pressure test the casing and BSR's to 250/7550psi for 15 minutes.

Did not bump the plug while cementing the 251mm casing leaving 75m (16bbls) of cement on top of the float collar.

216mm Hole / 197mm Liner (4418-5425m)

The 216mm BHA (216mm Hycalog RS 162 PDC Bit & Powerdrive Rotary Steerable BHA, ARC 900 and ISonic LWD) was run and tagged the top of cement at 4273m, 75m high or 16 bbls short of bumping the plug. Drilled cement from 4290-4300m at 0.3-3 m/hr. POOH to check the bit. The bit looked good, so TIH with tooth bit and attempt to drill suspected junk. While TIH, 2 pieces of aluminum from the SSR plug were circulated out of the hole. (One piece of aluminum fit perfectly into the throat of the PDC bit and would have been the prime cause for the problems drilling the cement). The 216mm casing shoe was drilled out and 3m of new hole prior to performing an FIT to 15.5 ppg with 12.7ppg mud in the wellbore.

Drilled ahead from 4421-4424m with an ROP of 2m/hr prior to tripping the mill tooth bit for slow ROP (1-1-NO-A-E-I-NO-PR). TIH with the rerun Hycalog RS 162 PDC Bit. Lost the MWD signal at 4000m while breaking circulation to cool the MWD tools. Drilled ahead from 4424-4441m with no MWD signal prior to POOH for MWD. Total UE time for the MWD failure: 26.5 hours.

The 216mm hole was directionally drilled from 4441-5405m MD in 69.5 hours at an average ROP of 13.9m/hr. The Paradril SBM was weighted up to 13.8ppg at 5219m MD as a result of a drilling break and associated background gas increase at 5219m MD.

A drilling break occurred at 5404m MD while drilling ahead. The well was flow checked and shut in with a 1.5 bbl volume increase. The well was killed using the Driller's Method and a mud weight of 14.8ppg.

While circulating the influx out of the hole, returns were partially lost as a result of a plugged choke. A total of 309bbls were lost prior to regaining full circulation. A total of 119 hours was spent circulating and conditioning mud to 14.8-14-9ppg after the initial well kill as a result of severely gas cut mud. The well was drilled ahead without real time MWD/LWD data from 5404-5425m at a reduced ROP in order to get sufficient overhole for logs to see the sand at 5404m before calling TD at an angle of approximately 16 degrees in the drop section of the directional profile. The well appeared to be ballooning as it would give back significant amounts of fluid on flow checks while circulating and after a short trip.

Circulated and conditioned mud prior to POOH for logging operations (total of 37.5 hours spent circulating including 2 hrs of WOW for tropical storm Arthur). Logging run #1: GR-OBMI-CNL-LDT. Logs bridged at 5407m. Dropped back down to 5406m for the second pass with logging run #1: CMR. The hole was swabbing while pulling out of the hole with the logging tools. It was discovered that the rubber logging tool centralizers had swelled to twice their normal size possibly as a result of a reaction between the rubber and CO2 gas in the wellbore. The decision was made to TIH for a cleanout trip prior to attempting logging run #2 (total of 91.5hrs spent on cleanout trip). Logging run #2: LDT-CNL-GR. Tools failed while TIH at 1300m. POOH to replace LDT and CNL. Logged section from 5425-5350m. Logging run #3: MSCT-GR. Tools failed while TIH at 1700m. The coring motor settings had to be adjusted to the maximum setting to compensate for the heavy mud. 88% recovery of rotary sidewall cores (recovered 22 of 25).

The 197mm liner was run (85jts – 46.1ppf, HC-Q125 SLSF) on 127mm drill pipe with a Hyflo valve in place. The liner tagged out at 5350m while TIH. Closed the Hyflo valve and converted the autofill float equipment and washed down from 5350-5404m. Attempted to work the liner past 5404m with 30-70k-lbs slack off. Spotted a 20 bbl weighted tuned spacer pill to break down any suspected filter cake with no success. Decision was made to set the liner at 5403m. The liner was cemented in place with Halliburton using 229 sxs (64.1bbls) of 15.6ppg Lafarge Class "G" + 35% SSA-1 with slight losses throughout the entire job. The plug was bumped at the theoretical displacement volume. A total of 98bbls were lost throughout the entire cement job. The ZXP liner top packer was set with 80k lbs and pressure tested to 4000psi surface applied pressure as per the CNSOPB requirements.

TIH with BOP isolation test tool and test joint (102mm x 127mm) and test BOP's to 250/10 000psi for 5 minutes as per the CNSOPB Drilling Regulations. Pressure test BSR's and casing to 250/4000psi.

165mm Hole (5425-6070m)

The decision was made to run a 165mm drillout BHA with a tooth bit as it was anticipated that there would be no competent cement on top of the liner and only 2m of new formation would be drilled prior to POOH for the VSP log. A 165mm mill tooth bit on a 102mm by 127mm tapered drill string was run in the hole to 4261m and circulated bottoms up from inside the liner top while simultaneously raising the mud weight to 15.1ppg. Tuned spacer and contaminated cement returns were noted while circulating. TIH and tagged the wiper plug at 5363m and continued to circulate and raise the mud weight to 15.1ppg. Rotated on the wiper plug/landing collar for 12 hours, adjusting parameters attempting to drill the wiper plug/landing collar. Drilled the shoe track and 2m of new formation (5.5hrs) to 5427m and spotted a LCM pill on bottom.

POOH and rigged up Schlumberger and ran a cased hole VSP log. Upon completion of the VSP log, a FIT was performed to 16.5ppg from surface prior to RIH. This was done in order to determine whether a cement squeeze or drill ahead BHA was needed, as 16.5ppg was the minimum acceptable FIT required to drill ahead. The 165mm packed BHA (165mm Security DBS FM2643i PDC Bit, straight A475M4560XP motor with 162mm NB sleeve, Impulse MWD and APWD) was run to 5427m and a FIT was conducted to 17.0ppg. While RIH at 4200m the MWD failed. The decision was made to TIH and drill ahead. A waiver was granted by the CNSOPB to drill ahead 300m without a directional survey. Drilled ahead from 5427-5480m at an AROP of 5.6m/hr. Trouble shot a stalled motor at 5480m prior to POOH to change out a failed motor and MWD. TIH and drilled ahead from 5480-5786m with rerun Security DBS FM2643i at an AROP of 5.6m/hr with the inclination of the wellbore dropping at a rate of 1-1.5deg/30m. Circulated and raised the density to 15.3ppg at 5750m as per the program. Bit tripped for slowed ROP (3-3-WT-N-X-I-NR-PR) at 5786m and TIH with new PDC bit (STC – MA32), mud motor and Impulse tool. Drilled ahead

from 5786-6070m MD at an AROP of 5.1m/hr with the inclination of the well dropping at 1 deg/30m. At 6070m the MWD failed and TD was subsequently called. The final inclination at 6070m was 1.73 degrees. The Paradril SBM was weighted up as per the mud weight schedule while drilling (15.5ppg at 6021m and 15.8ppg at 6049m to prepare for logging operations).

The well reached TD on Aug 9th at 04:00. Circulated bottoms up, POOH and rigged up Schlumberger to perform three logging descents. Logging run #1: EMS-GR-DSI-AIT. Logging run #2: GR-CNL-LDT. Logging run #3: GR-MCST. GR failed on the first 3 runs prior to cutting any cores and failed after cutting 8 cores on the fourth run. (100% recovery - 8 of 8 cores recovered). The tool head failed on the fifth attempt and the logging program was terminated.

Abandonment

Upon completion of the formation evaluation program, the decision was made to abandon the well. A waiver to not set any open hole abandonment plugs was granted by the CNSOPB. M/U and TIH with a 197mm EZSV and attempted to set the retainer at 5332m but could not get a set. Attempted to set the retainer at 5320 and 5363m with no success. POOH and rigged up Schlumberger to run the EZSV on wireline. RIH and set the retainer at 5332m, rigged up Halliburton and pressure tested the retainer to 2000psi. RIH with stinger assembly on 102mm and 127mm drill pipe and stung into the retainer. Established an injection rate at 3bbls/min with 2700psi (leak off at 197mm shoe was 17.5ppg). Mixed and pumped 122sxs (23 bbls) of 16ppg Lafarge Class "G" + 11 gal Halad 344EXP + 8 gal SCR100 + 12 gal HR-25 + 6 gal CFR3. Squeezed 50 sxs of slurry below the retainer and spotted 30m of slurry on top of the retainer. Pulled 5 stands wet and circulated bottoms up to ensure any contaminated cement was out of the hole. POOH to 4270m and spotted a 100m balanced plug across the 197mm liner top with 96sxs (19bbls) of 16.0ppg Lafarge Class "G" + 9 gal Halad 344EXP + 7 gal SCR-100 + 5 gal CFR3 to 4170m.

TIH with the 251mm retainer and perforating gun assembly on drill pipe to abandon the 251mm casing. Set the retainer at 1109m, rigged up Halliburton and pressure tested the retainer to 500psi. Attempted to fire the perforating guns with 2500psi, but the guns would not fire. Pulled out of the retainer and POOH. TIH with the WBRRT and retrieved the 251mm wear bushing. TIH with the 251mm seal retrieval tool and pulled the 251mm seal. Prior to POOH, pumped across the BOP to clear any trapped gas – no gas to surface on bottoms up. M/U and TIH with 251mm casing cutting assembly to 1104m and cut the casing. POOH to the casing spear, rigged up FI casing handling equipment and L/D 251mm casing.

TIH with the 346mm retainer on drill pipe to abandon the 346mm casing. Set the retainer at 1086m after numerous attempts, rigged up Halliburton and pressure tested the retainer to 500psi. Established an injection rate at 4bpm with 1720psi (estimated leak off at 346mm shoe was 14.9ppg). Mixed and pumped 158xxs (33bbls) of Lafarge Class "G" + 0.17gal/sk Halad 344 + 0.11gal/sx CaCl2 + 0.07gal/sx CFR-3L + 4.76gal/sx seawater and squeezed below the 346mm retainer. Pulled out of the retainer and circulated bottoms up and displaced the well to 11.2ppg mud. TIH with the 346mm seal retrieval tool, shut the annular and pulled the 346mm seal. Circulate down the drillpipe and up the choke line with partial returns. Shut down and closed the pipe rams and circulated across the wellhead to check for gas in the 346mm x 508mm annulus. Filled the riser, opened the annulus and observed mud losses. Top filled the well with 45 bbls of base oil followed by seawater. POOH with the 346mm seal and top filled the well with seawater. M/U and TIH with 346mm casing cutting assembly to 1083m and cut the casing. POOH to the casing spear, rigged up FI casing handling equipment and L/D 346mm casing. TIH with open ended 127mm drillpipe and set a cement plug across the 346mm casing stub with Halliburton. Mixed and pumped 702sxs (145bbls) of 15.9ppg Lafarge Class "G" + 0.07gal/sx CFR-3 + 0.33gal/sx CaCl2 + 4.76gal/sx seawater. Displaced the cement with fresh water, shut the annular and squeezed the cement across the 346mm casing stub and held pressure on the cement for 7 hours. Bled the pressure off and performed a 15 minute negative pressure test with seawater in the drillstring.

The Riser was displaced to seawater and the BOP's were unlatched from the SSWH at 15:00 on August 19, 2002. Pulled and laid down 37 joints of riser and recovered the BOP to surface. Rigged up the Weatherford MOST tool on 168mm drill pipe to cut the 508mm and 914mm casing and the recover the SSWH. Latched the MOST tool onto the HPWH and cut the casings at 1003m (2m below the mudline)

2:30 Aug 21, 2002. Recovered the SSWH and the gimbaled mudmat to surface (mudmat was covered in cement). The mud pits were cleaned, all equipment was back loaded and the Deepwater Millenium was released from Newburn H-23 location at 03:30 on August 22, 2002.

Appendix D Bit Record

Appendix D Bit Record

Š	Chevron																													Bit Record	rd Version 1
						\vdash	Jets (mm)	(mm	L			L	L	L		-		-	H	μ		٥	Bit Grading	٩		H	H	_	L		
# c	Serial	Oste Pulled	Size	A A		P D C C C C C C C C C C C C C C C C C C	0 - N (#-N 6	TFA (om.)	Depth (m)	Meters Drilled	Total Hours	Avg.	Avg. WOB (dan)	Avg. RPM	Avg. Pump M	Mud Wt kg/m³	Mud (m³/ B	BR HHP	Inner Rows	Outer Rows	Location Duli Char	Bearings	Gage	Other Char	Besson Sniled	Trip Time on Hrs	p Hole	Cost (\$/m)		Remarks
-	W12672		Ψ.	REED E	1 (5		3 17.5	1 25.3		5 5		14.5	6.83	2.2	20	8970	1030	5.3	352 0.66	9		H			H	SHALE	8	٥	5,682	Run w/ 1067mm hole opener	n hote opener
ا م	756230	5/27/2002 660	99	Sec	XT-1C	115M 3	3 15.1 1	1 22.1	1 9.208	1917	817	98	22.69	1.8	230	19527	1030	5.7 7.	761 1.43	3 1	1	WT A	E		Q	TD SHALE	9	٥	1,408	TD 660mm hole	6
6	JS-7947		432		S91VPX S222		9 12.7		1.4	3515	1598	119	13.43	1 2.2	240	28980	1220	5.3 4	482 2.12	2 2	1	CT	×	-	Ş	TD shale	12	٥	2,137	TD 432mm hole	
4	200600		311	+	DS163 M422 1	V422	14.3	5 12.7	7 7.94	4418	88	56.5	15.98	9	150	24840	1450	3.7	404 3.43	3 1	2 (WT A	×	-	ъ	TD SHALE	E 4	8	1,952	TD 311mm hole	
4RR1	<u> </u>	6/28/2002 311	311		DS163 A	M422 1	14.3	5 12.7	7 7.94	4418	0	<u> </u>	<u>.</u>	<u> </u>	Ŀ	<u> </u>	1525	2.1	181	1	2 1	WT	×	-	CT	TD SHALE	E 14	8		Wiper trip betw	Wiper trip between logging runs
2		7/2/2002 216	216		RS162	M322 1	Ξ	5 10.3	3 5.134		0		Ŀ	Ŀ	·	-	1525	2.1	181	ĿĪ	4	NO	×	-	NO	ВНА		8		UNABLE TO D	UNABLE TO DRILL FLT EQUIP
g	JZ3DH	7/4/2002	216	4	MX-1	117	3 14.3	 	4.818		L.,	0.5	12.00	6	8	34500	1525	2.2	233 4.11	1 1	÷	NO	Е	-	QN	PR SHALE	14 14	8	63,750		DRILL FLT EQUIP + F.I.T. HOLE
58B1		7/5/2002	216	+-	\mathbf{r}	_		4 10.3				2	8.50	٥	150	33465	1525	2.2	204 3.59	- 63	-	¥ Q	×	-	ş	DTF SHALE	E 14	4 8	23,529	MWD FAILURE	
SAR2		+	216			M322 2	Ξ	4 10.3	3 5.268		L	-	12.00	^	8	13179	1790	0.95	20 0.35	1	-	NO NO	×	-	Q	TD SHALE	E 14	4 16	2,439	TD 216mm hole	6
6RR1	1	_	216	1			3 14.3	-	4.818		lacksquare	 	L				1790	0.3	_	2	Ē	ВТ А	Е	-	NO	LOG	19	19.5 16		Wiper trip betw	Wiper trip between logging runs
7		┿	165	-	_	-	3 15.9	-	5.957		<u> </u>	<u> </u> -	2.00	7.5	82	29532	1810	6.1	39 1.19	9 2	2	2 18	Е	-	NOL	LOG SHALE	E 16	8 20	212,500		DRILL FLT EQUIP + F.I.T. HOLE
8	702953	-	165		 =	M433	3 15.9	H	5.957	_	Ľ	89	80.9	3.5	330	30360	1835	0.87	12 0.36	96 3	3 ^	N TW	×	-	RN	ROP SHALE	E 24	4 5	5,780	POOH for low ROP	чог
6	EB1005	8/9/2002	165	≅	MA32 A	M432	3 15.9	┝	5.957	7 6070	284	55.5	5.12	6	365	36570	1900	0.95	16 0.47	1 1	Ē	WT A	×	-	Q.	TD SHALE	E 24	4 2	6,998	TD well	
			_		1	T		\vdash	ļ		_	_		_		_		-		<u> </u>											
						T		-		_	_	_		_				-				-									
						T	L	\vdash	L	_	_	_	L					-	-	-		-					_				
						T		<u> </u>	-		L	L						 -	 -	_		_			-						
								_	L	_		_						\vdash	_	_		-									
L						T		\vdash		_		_						\vdash	-	_		<u> </u>					-				
			_			T		\vdash	_	-		_	_	_						-		_	_								
						T		_		_		_						\vdash		\vdash		-					-				
				L		T		\vdash		L		_						\vdash	-	\vdash											
						T				_	_		_					-	H	\vdash											
ij		DECOMATED ALL ENNING																												Page 1	of 1
Orilling	Orilling Representative:	We:	T	TION I				1 0 4				Field:				Exploration	ľ	Lease:		=	FI 2359	į	Well No.:	 9		-	AF.	ļ	RWFEC-R2253	253 Date:	
			Robicha	x/ Jones	Robichaux / Jones / Curran / Ruitenschild / Alworth / Bruton	uriensch	id / Alwo	₽/ BLG	5			4			ð	Official	1			1	2002		4	١	l	-	┨			-	

Appendix E BHA Summary

Appendix E BHA Summary

JSO#	630415171	Depth in:	1001	Depth out:	1100		Mtr. Drlg	99	BHA#	1
	Newburn H-23	Date In:	21-May-02	Date Out:	23-May-02		Days:	3	Hole Size:	1067
	ChevronTexaco	Slide Dist.:	0.0	Slide Hrs.:	0.00	Hrs.	Steering %	0%	PDM Run #:	1
	Newburn Deepwater	Rotate Dist.:	99.0	Rot. Hrs.:	17.00	Hrs.	Rotate %	100%	Drig Hrs:	17.00
	Nova Scotia	R/S config:	N/A	Volume:	1400.0	gpm	Slide ROP:	N/A	Circ. Hrs:	17.40
	Millenium	ABH Set:	N/A	RPM S/DH:	80	133	Rot. ROP:	5.8	Tot. D&C:	34.40
		Vendor	N/A	Avg. WOB:	15	klbf	Avg. ROP:	5.8	Inc. In:	0.40
DD: DD:	Victor Medina	Reac. Torq.:	N/A	SPP Off/On:	2750	2900	Bit to Svy:	23.6	Azm. In:	329.00
		 		PV/YP:	N/A	2900	Sand%	N/A	Inc. Out:	0.29
	Bruno Lima	Mud Type:	WB		N/A		Solid cont:	2.00%	Azm. Out:	104.33
	Marcus Turner	Mud Wt: Mud Vis:	8.6 175	Chlorides: WL:	N/A		Oil/Water :	N/A	MWD BHT:	30.0
	Tom Jones /	P/U Wt.:	340.0	S/O Wt.:	330.0	-	BHA Wt.:	120.0	Rot. Torq:	5
String Wt:	333.0	P/U VVI	340.0	3/O W		ECORD.	DOTA WE	120.0	Not. Forq.	FAILED
Motor RPM	TFA / Nozzles	00150	OUTER	MA 100		ECORD	CALICE	OTHER	DEASON	
Rev / gal		INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
0.095			0 1 1 #	51/11/14 00	00		B. Conn	T Conn	Longth	Cum Lon
Item	Description	Vendor	Serial #	FN/MAX OD	OD	ID	B. Conn	T. Conn	Length	Cum Len
1	26" Bit Jets 3x28 +CJ			26*	660			7 5/8 RP	0.67	0.6
2	42" Hole Opener Jets 4x20	Weatherford	506226	9 13/16"-2.40"	1067	NA	7 5/8 RB	7 5/8 RP	2.16	2.8
3	Bit Sub with float	TransOcean	253726-3	9 1/2"-4.25"	249	76	7 5/8 RB	7 5/8 RB	1.30	4.1
4	MWD	Anadrill	11677	9 1/2"-1.47"	241	100	7 5/8 RP	7 5/8 RB	9.17	13.3
5	42" Stabilizer	Anadrill	35565	9 1/2"-3.01"	241	84	7 5/8 RP	7 5/8 RB	2.92	16.2
6	3 x 9 1/2" DCs	TransOcean		 	241	89	7 5/8 RP	7 5/8 RB	28.07	44.2
7	X/O	TransOcean	9330		241	89	7 5/8 RP	6 5/8 RB	1.34	45.6
8	3 x 8 1/4" DCs	TransOcean			210	76	6 5/8 RP	6 5/8 RB	27.71	73.3
9	x/o	TransOcean	503530	 	210	76	6 5/8 RP	6 5/8 FHB	1.53	74.8
10	15 HWDP	TransOcean				ļ	6 5/8 FHP	6 5/8 FHB	140.28	215.
11		ļ			ļ	ļ				
12		ļ								
13				ļ	ļ	ļ				
14						<u> </u>				
15						<u> </u>				
16		1				↓				
17										<u> </u>
18				<u></u>		L				
19		<u> </u>				<u> </u>			ļ	
20		ļ				ļ				
21										
22										<u> </u>
23							ļ		<u> </u>	
24				<u></u>						
25		<u> </u>			ļ				<u> </u>	
26		<u> </u>	<u> </u>				<u> </u>			
27										ļ
28				ļ					<u> </u>	
29										
30									<u> </u>	
	вотто	M HOLE ASS	EMBLY (OBJ	ECTIVES vs R	RESULTS)			BIT TO KEY I	TEM (STBS. TO	MIDPOINT)
This well w	as spudded as planned	d, the BHA d	rilled to 105	7m but inclin	ation was h	igher than e	xpected.			
Stopped di	rilling and oved the rig 4	I0m due Nor	th from origi	inal coordina	ites. Re-spu	id well and je	etted the			
first 13 me	ters and then rotated 10	0-20 rpm and	I increased	gpm's as ne	ed from 700	gpm to 1200	gpm. The			
key objecti	ve for this section was	achieved sin	ce the well i	remained ve	rtical. TD for	r this section	was			
1100m as	planned. Water depth is	s 977m, rig h	igh is 24m (for future ref	ference).					
										

180#	630/15171	Depth in:	1100	Depth out:	1917		Mtr. Drlg	817	BHA#	2
	630415171			Depth out. Date Out:	28-May-02		Days:	4	Hole Size:	660
	Newburn H-23	Date In:	25-May-02		0.00	Hrs.	Steering %	0%	PDM Run #:	1
	ChevronTexaco	Slide Dist.:	0.0	Slide Hrs.:	33.50		Rotate %	100%	Drig Hrs:	33.50
	Newburn Deepwater	Rotate Dist.:	817.0	Rot. Hrs.:	1400.0	Hrs.	Slide ROP:	N/A	Circ. Hrs:	17.40
	Nova Scotia	R/S config:	7/8 GT	Volume:		gpm				50.90
Rig:	Millenium	ABH Set:	1.15	RPM S/DH:	80	133	Rot. ROP:	24.4	Tot. D&C:	
DD:	Victor Medina	Vendor	SLB	Avg. WOB:	15	klbf	Avg. ROP:	24.4	Inc. In:	0.40
DD:		Reac. Torq.:	N/A	SPP Off/On:	2750	2900	Bit to Svy:	23.6	Azm. In:	329.00
MWD:	Bruno Lima	Mud Type:	WB	PV/YP:	N/A		Sand%	N/A_	Inc. Out:	0.29
MWD:	Marcus Turner	Mud Wt:	8.6	Chlorides:			Solid cont:	2.00%	Azm. Out:	104.33
Co. Rep:	Tom Jones /	Mud Vis:	175	WL:	N/A		Oil/Water:	N/A	MWD BHT:	30.0
String Wt:	299.0	P/U Wt.:		S/O Wt.:			BHA Wt.:		Rot. Torq:	5
lotor RPM	TFA / Nozzles				BIT RI	ECORD				FAILED
Rev / gal		INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
0.095			 							
Item	Description	Vendor	Serial #	FN/MAX OD	OD	ID	B. Conn	T. Conn	Length	Cum Len
	f	Security	756230					7 5/8 RP	0.40	0.
	26" Milled tooth XT1C			0.43/243	245	N/A	7 5/8 RB	7 5/8 RB	9.72	10.
	Motor A962 w 25 3/4" stab	Anadrill	001	0.43/243	245	76		7 5/8 RB	0.91	11.
3	Float	Anadrill	SD-2262	0.05711	241	 	7 5/8 RP		2.22	
4	25 3/4" String Stabilizer	Anadrill	SD-13070	0.86/241	241	76	7 5/8 RP	7 5/8 RB		13.
5	ARC 900	Anadrill	9027	1.93/230	244	61	7 5/8 RP	7 5/8H90 LTB	6.23	19.
6	Powerpulse MWD	Anadrill	11677	0.45/241	241	100	7 5/8H90 LTP	7 5/8 RB	8.42	27.
7	NMDC w/ Totco ring	Anadrill	31340-01		241	83	7 5/8 RP	7 5/8 RB	9.07	36.
8	25 3/4" String Stabilizer	Anadrill	SD-13071	0.74/241	241	76	7 5/8 RP	7 5/8 RB	2.06	39.
9	3 x 8 3/16" DCs	TransOcean		l	241	89	7 5/8 RP	7 5/8 RB	28.24	67.
10	χo	TransOcean		52/210	240	78	7 5/8 RP	6 5/8 FHB		
11	3 x HWDP	TransOcean					6 5/8 FHP	6 5/8 FHB		
12	Jar			0.57/205	205	76	6 5/8 FHP	6 5/8 FHB	9.60	
13	11 x HWDP	TransOcean		1			6 5/8 FHP	6 5/8 FHB		
	TT X TOVE				<u> </u>	1				
14		 		 					-	
15				 	 	 	 	 		
16			ļ	-		 				
17				<u> </u>					 	
18				<u> </u>		-	ļ		 	
19					ļ	 	ļ			
20		1			<u> </u>	1				
21			<u> </u>				1			
22										
23									Ĺ	
24										
25									į.	
26	† · · · · · · · · · · · · · · · · · · ·					1				
				+	<u> </u>	1			1	
27	 	 		 	 	†	†	<u> </u>	1	
28	 	 		 		 	<u> </u>			
29	 	 	 	+	<u> </u>	+	 	-	 	t
30	<u> </u>				-	1		DIT TO 1151		**IDDOM**
	ВОТТС	IN HOLE ASS	EMBLY (OBJ	ECTIVES vs F	(ESULIS)	if rocuired	No	BIT TO KEY IT	TEM (STBS. TO	WIIDPOINT)
This BHA	was designed to hole th	e inclination	to vertical a	and to make	corrections	r required.	NO The			ļ
corrections	were perfomed along	inis 81/m ru	n. Ine BHA	successium	/ acomplish	the objective	tondonas			<u> </u>
	tested up to 18 kdaN a	na smali tend	sency to bui	ıla, wnen 8-1	Z Koain was	applied the	tendency			<u> </u>
vas to go	back to vertical.							<u></u>		
										<u></u>
										T
										† · · · · ·
										†
										
										
										
										-
								i		1

MINON Description Series	100"	C2044 F474	Double in a	4047	Donthout	1017		Mts Dele	0	BHA#	3
Operation Chemonifesaco Silele Pat. O.0 Mrs. Silele Pat. O.0 O.0 Pat. O.0											
Field Seedom Desposater Rotate Dist. Q.0 Rot. Page Rotate Dist. Q.0 Page Page Page							Lime .				
Prywince Nove Scotes RS condig NA											
Reg							1				
DD Victor Medina Vendor NUA Aug.WOB Net Avg.ROP 0.0 for. Int 0.28						1733.0					
DD Reac. Torq. NA							 				
MWD: Brunc Lima		Victor Medina					KIDI		0.0		
MWO Marcus Turner		2				14	127		_		
Co. Rep Ton Jones							127				
String With Pru With Pru With String						1500					100.40
Store RPM				143					30		
INNER			P/O WL.		3/0 11	DIT D	CORR	DI IA W		rtot. rorq.	EALLED
Item		IFA / Nozzies	INNER	OUTER	MAJOR			GALIGE	OTHER	PEASON	
1 CART assy wBulleye	Rev / gai		INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	KLASON	1237110
1 CART assy wBulleye		Dana-inting	Vander	Sorial #	ENIL / OD	OD	ID.	B Conn	T Conn	Length	Cum Len
2 DP			Vendor	Serial #	FN L/OD	0.0	l U	B. COIIII	r. com	Length	Culli Leii
3 Powerpulse MWD Anadrill 11677 0.45/241 9 1/2" 3 7/8" 7 58/98 8.42 4							1			l	
4				44077	0.457044	0.4/08	2.7/01		7.5/9.DB	0.42	
5 6		Powerpulse MWD	Anadriii	116//	0.45/241	9 1/2	3 //6	/ 3/8H90 LTP	1 3/0 KB	0.42	
6		ļ	 		 			ļ			
8			-		 						
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9							-	<u> </u>			
9		 			 		 	 			
10		 		ļ	 					 	
11						<u> </u>					
12			ļ		ļ					 	
13							 				
14					ļ ———					<u> </u>	
15	13		ļ					ļ		 	
16	14						 		ļ		
17 18 19 20 21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) This BHA was designed check the bullseye sub's inclination against the MWD inclination. BIT TO KEY ITEM (STBS. TO MIDPOINT Bit to Gamma Ray Bit to Resistivity Bit to Resistivity Bit to Resistivity Bit to Resistivity Bit to Delta T	15		ļ			ļ	<u> </u>			ļ	
18 19 20 21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) This BHA was designed check the bullseye sub's inclination against the MWD inclination. BIT TO KEY ITEM (STBS. TO MIDPOINT Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to APWD Bit to APWD Bit to APWD Bit to Delta T	16		ļ			ļ	ļ				
19 20 21 21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) This BHA was designed check the bullseye sub's inclination against the MWD inclination. Bit to D&I survey Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T	17										<u> </u>
20 21 21 22 22 23 24 24 25 25 26 27 26 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	18		<u> </u>		ļ						
21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) This BHA was designed check the bullseye sub's inclination against the MWD inclination. BIT TO KEY ITEM (STBS. TO MIDPOINT Bit to Dail survey Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T	19				ļ						
22 23 24 24 25 25 26 27 26 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	20		<u></u>	<u> </u>	ļ				<u> </u>	ļ	<u> </u>
23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) Bit to D&I survey Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T	21						_	ļ		 	
24 25 26 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	22						↓			<u> </u>	
25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) BIT TO KEY ITEM (STBS. TO MIDPOINT Bit to D&I survey Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T	23		ļ		ļ		↓			ļ	
26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) This BHA was designed check the bullseye sub's inclination against the MWD inclination. Bit to D&I survey Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T	24		ļ		ļ	ļ	ļ	<u> </u>		ļ	
27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) This BHA was designed check the bullseye sub's inclination against the MWD inclination. Bit to D&I survey Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T	25		1		<u> </u>						
28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) Bit to D&I survey Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T	26		<u> </u>		<u> </u>	ļ	ļ	ļ		<u> </u>	
29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) BIT TO KEY ITEM (STBS. TO MIDPOINT his BHA was designed check the bullseye sub's inclination against the MWD inclination. Bit to D&I survey Bit to Gamma Ray Bit to APWD Bit to Delta T	27		ļ	ļ	<u> </u>	ļ		ļ	<u> </u>	1	
BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) BIT TO KEY ITEM (STBS. TO MIDPOINT Bit to D&I survey Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T	28		ļ				ļ			ļ	
BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) This BHA was designed check the bullseye sub's inclination against the MWD inclination. Bit to D&I survey Bit to Gamma Ray Bit to APWD Bit to Delta T	29					<u> </u>				ļ	
This BHA was designed check the bullseye sub's inclination against the MWD inclination. Bit to D&I survey Bit to Resistivity Bit to APWD Bit to Delta T	30		<u></u>	<u> </u>	L		<u> </u>			<u> </u>	L
Bit to Gamma Ray Bit to Resistivity Bit to APWD Bit to Delta T		вотто	M HOLE ASS	EMBLY (OBJ	ECTIVES vs R	RESULTS)			1		MIDPOINT)
Bit to Resistivity Bit to APWD Bit to Delta T	This BHA	was designed check the	bullseye su	b's inclination	on against th	e MWD incl	ination.				ļ
Bit to APWD Bit to Delta T									<u> </u>		
Bit to Delta T										ty	ļ
Bit to Stabilizers									Bit to Delta T		
									Bit to Stabilize	rs	
									<u></u>		<u> </u>
											<u> </u>

JSO#	630415171	Depth in:	1917	Depth out:	3515		Mtr. Drlg	1598	BHA#	4
	Newburn H-23	Date In:	3-Jun-02	Date Out:	12-Jun-02		Days:	10	Hole Size:	17.0
	ChevronTexaco	Slide Dist.:	0.0	Slide Hrs.:	0.00	Hrs.	Steering %	0%	PDM Run #:	1
	Newburn Deepwater	Rotate Dist.:	1598.0	Rot, Hrs.:	109.92	Hrs.	Rotate %	100%	Drlg Hrs:	109.92
	Nova Scotia	R/S config:	5/6 XP	Volume:	1453.0	gpm	Slide ROP:	N/A	Circ. Hrs:	35.94
	Millenium	ABH Set:	0.00	RPM S/DH:	100	145.3	Rot. ROP:	14.5	Tot. D&C:	145.86
	Shane Vercammen	Vendor	SLB	Avg. WOB:	5.5	klbf	Avg. ROP:	499.4	Inc. In:	0.33
DD:	Sharie Vercannien	Reac. Torq.:	N/A	SPP Off/On:	4200	4350	Bit to Svy:	16.21	Azm. In:	324.90
	Musium Akimaku	Mud Type:	PARADRIL	PV/YP:	23	12	Sand%		Inc. Out:	0.29
	Muyiwa Akinpelu Marcus Turner	Mud Type.	12	Chlorides:	840		Solid cont:	15.00%	Azm. Out:	159.40
	Tom Jones	Mud Vic.	61	WL:	7.3		Oil/Water :	85/15	MWD BHT:	103.40
		P/U Wt.:	- 01	S/O Wt.:	7.3		BHA Wt.:	03/13	Rot. Torq:	7
String Wt:		F/0 WC.		0/O W	DIT D	ECORD	Di iA We.		rtot. Torq.	FAILED
lotor RPM	TFA / Nozzies	INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
Rev / gal		INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTTIER	KLASON	1237110
0.1	Description	\/a a	Carial #	FN L / OD	OD	ID	B. Conn	T. Conn	Length	Cum Ler
Item	Description	Vendor	Serial #				B. COIIII		0.33	
	17" PDC, Type: S91VPX	Smith-Geodimond	JS-7947	Jets: 10 x 16	17"	N/A	7.50.00	7 5/8 RP		0
2	Motor A962 Slick	Anadrill	004	0.42/241	9 1/2"	N/A	7 5/8 RB	7 5/8 RB	9.19	9
	Float	Anadrili	SD-2262	0.91/241	9 1/2"	3.0"	7 5/8 RP	7 5/8 RB	0.91	10
4	16 7/8" String Stabilizer	Anadrill	SD-13441	0.86/216	9 11/16	2 13/16*	7 5/8 RP	7 5/8 RB	2.32	12
5	ARC 900	Anadrill	9021	1.93/230	9 1/16"	N/A	7 5/8 RP	7 5/8H90 LTB	6.32	19
6	Powerpulse MWD	Anadrill	19773-FC	0.18/244	9 1/2"	5"	7 5/8H90 LTP	6 5/8 FHP	8.44	27
7	X/O	Anadrill	962002	0.49/291	9 9/16*	3 1/4"	6 5/8 FH B	7 5/8 R B	0.83	28
88	NMDC w/ Totco ring	Anadrill	31340-01		9 1/2"	3 1/4"	7 5/8 RP	7 5/8 RB	9.07	37
9	16 7/8" String Stabilizer	Anadrill	SD-13309	0.88/216	9 11/16"	2 15/16"	7 5/8 RP	7 5/8 RB	2.22	39
10	3 x 9 1/2" DCs	TransOcean			9 1/2"	3 1/2"	7 5/8 RP	7 5/8 RB	28.07	67
11	X/O	TransOcean	9330	1.15/210	9 1/2"	3.0"	7 5/8 RP	6 5/8 RB	1.34	69
12	3 x 8 1/4" DCs	TransOcean			8 3/16"	3 1/16'	6 5/8 RP	6 5/8 RB	27.71	96
13	X/O	TransOcean	53302-1	1.53/210	8 1/4"	3.0"	6 5/8 RP	6 5/8 FHB	0.94	97
14	3 x HWDP	TransOcean			6 5/8"	4 1/2"	6 5/8 FHP	6 5/8 FHB	28.11	125
15	Jar		DAH-03781	0.57/205	8 1/16'	3.0"	6 5/8 FHP	6 5/8 FHB	9.92	135
16	20 x HWDP	TransOcean		ļ			6 5/8 FHP	6 5/8 FHB	187.25	322
17						↓			ļ	
18						ļ				
19							L			
20										
21										
22										
23										
24							ļ			
25				<u> </u>						
26						L				
27		<u> </u>				<u> </u>				
28							<u> </u>			
29		İ								
30										
	вотто	M HOLE ASS	EMBLY (OBJ	ECTIVES vs R	ESULTS)			BIT TO KEY IT	EM (STBS. TO	MIDPOINT)
ssembly	will be used drill to the	13 5/8" csg p	oint making	corrections	as required	to keep the	well	APWD		15.00
ertical.								Resistivity		15.61
	nal and MWD/LWD req						un. Quite a	Gamma Ray		15.69
t of down	n time waiting on SWAC	O to work or	their equip	ment. Overa	ll a good ru	n.		D&I survey	_	23.37
								Mid. Stab.		11.59
								Top Stab.		38.52
										T
									-	
									***************************************	—
										
								1		1

JSO#	630415171	Depth in:	3515	Depth out:	4418		Mtr. Drlg	903	BHA#	5
Well Name:	Newburn H-23	Date In:	17-Jun-02	Date Out:	24-Jun-02		Days:	8	Hole Size:	311
Operator	ChevronTexaco	Slide Dist.:	0.0	Slide Hrs.:	0.00	Hrs.	Steering %	0%	PDM Run #:	
	Newburn Deepwater	Rotate Dist.:	903.0	Rot. Hrs.:	45.66	Hrs.	Rotate %	100%	Drlg Hrs:	45.66
Province:	Nova Scotia	R/S config:	N/A	Volume:	1000.0	gpm	Slide ROP:	N/A	Circ. Hrs:	76.44
Rig:	Millenium	ABH Set:	N/A	RPM S/DH:	150	0	Rot. ROP:	19.8	Tot. D&C:	122.10
DD:	Shane Vercammen	Vendor	SLB	Avg. WOB:	13	klbf	Avg. ROP:	19.8	Inc. In:	0.29
DD:	James Cockroft	Reac. Torq.:	N/A	SPP Off/On:	3626	3626	Bit to Svy:	23.52	Azm. In:	159.36
MWD:	Olumuyiwa Akinpelu	Mud Type:	Paradril	PV/YP:	25	44	Sand%		Inc. Out:	8.89
MWD:	John Hobin	Mud Wt:	12.7	Chlorides:	42000		Solid cont:	20.00%	Azm. Out:	315.82
Co. Rep:	Todd Robichaux	Mud Vis:	180	WL:	7.2		Oil/Water:	74/26	MWD BHT:	60.0
String Wt:	677.0	P/U Wt.:	686.0	S/O Wt.:	675.0		BHA Wt.:		Rot. Torq:	13
Motor RPM	TFA / Nozzles				BIT RI	ECORD				FAILED
Rev / gal	1.23	INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
0	5x16, 1x18	11	2	WT	Α	X	l l	СТ	TD	NO
Item	Description	Vendor	Serial #	FN L / OD	OD	ID	B. Conn	T. Conn	Length	Cum Len
1	RS163 (1x18, 5x16)	SLB	200600		12 1/4			6 5/8 RP	0.27	0.27
2	Bias unit	SLB	90127	.41/9 3/16	9 3/16	N/A	6 5/8 RB	NC70	0.98	1.25
3	Ext. Sub	SLB	90015	.39 / 9 3/16	9 3/16	N/A	NC70	7 5/8 RP	0.39	1.64
4	Control collar (w/ CU)	SLB	90045	.70/8 5/16	8 13/16	N/A	7 5/8 RP	6 5/8 RB	3.04	4.68
5	X/O (NM)	SLB	241-68	.64/9 1/4	9 5/16	3 1/16	6 5/8 RP	7 5/8 RB	0.83	5.51
6	Stabilizer	SD	SD12757	.64/9 1/4	9 3/16	3 1/8	7 5/8 RP	7 5/8 RB	1.96	7.47
7	Flex monel	SLB	SD 35567	.92/234	9 3/16	3 1/16	7 5/8 RP	7 5/8 RB	4.65	12.12
8	Float sub	SLB	SD-2262	0.91/9 1/2	9 1/2	3	7 5/8 RP	7 5/8 RB	0.91	13.03
9	ARC 900	SLB	9021	1.93/9 1/16	9 1/16	N/A	7 5/8 RP	7 5/8H90 LTB	6.32	19.35
10	Powerpulse MWD	SLB	19732	.21/9 7/16	9 7/16	N/A	7 5/8H90 LTP	6 5/8 FHP	8.35	27.70
11	12 1/8" ILS Stab	SLB	24194	.46/8	11	N/A	6 5/8 FHB	6 5/8 FHP	1.21	28.91
12	Isonic	SLB	825	1.31/9 1/16	8 3/8	N/A	6 5/8 FHB	6 5/8 FHB	6.86	35.77
13	X/O	SLB	6	.4 / 8 1/4	8 1/4	108	6 5/8 FHP	6 5/8 RB	0.48	36.25
		TransOcean		.470 114	8 3/16"	3 1/16'	6 5/8 RP	6 5/8 RB	27.71	63.96
14	3 x 8 1/4" DCs		F2202.4	1 52/9 1/4		† ·······		 		
15	X/O	TransOcean	53302-1	1.53/8 1/4	8 1/4"	3.0"	6 5/8 RP	6 5/8 FHB	0.94	64.90
16	3 x HWDP	TransOcean	0707	50/0 2/45	6 5/8"	4 1/2" 76	6 5/8 FHP	6 5/8 FHB	28.11 9.65	93.01
17	Jar		3787	.60/8 3/16	209	/6	6 5/8 FHP	6 5/8 FHB		102.66
18	20 x HWDP	TransOcean		 		-	6 5/8 FHP	6 5/8 FHB	187.25	289.91
19	-					 		-		
20						 				
21					<u> </u>			 		
22					<u> </u>	 				
23					<u> </u>			<u> </u>		
24		ļ						ļ		
25										
26					ļ					· · · · · · · · · · · · · · · · · · ·
27		ļ		<u> </u>		<u> </u>	ļ	<u> </u>	ļ	
28				-						
29	ļ	ļ			 			<u> </u>		
30						1			i	
				ECTIVES vs R		D-"			EM (STBS. TO	
	as initially run in the hole							Btm. Stab.		6.49
slow but all	went well. After the lea	ik oπ test the	tool was se	et in to a 180	0/100% SE	uing to main	ıaın verticai	APWD		15.28
	OP was reached. This w							Resistivity		15.89
	ar and the inclination inc to try a setting of 303M							Gamma Ray		15.97
	m DLS, the planned bui							D&I survey		23.52
	rrect for azm, & to decre							Top Stab.	· · · · · · · · · · · · · · · · · · ·	28.31
	hange of well plan to a							Delta T		33.17
	o be in very good condi									
	ill out casing, drill a ver									
l										
İ									·····	
1										
1										

JSO#	630415171	Depth in:	4418	Depth out:	4418		Mtr. Drig	0	BHA#	6
	Newburn H-23	Date In:	1-Jul-02	Date Out:	2-Jul-02		Days:	22	Hole Size:	8.5
	ChevronTexaco	Slide Dist.:		Slide Hrs.:		Hrs.	Steering %	N/A	PDM Run #:	N/a
	Newburn Deepwater	Rotate Dist.:		Rot. Hrs.:	1.74	Hrs.	Rotate %	N/A	Drlg Hrs:	1.74
	Nova Scotia	R/S config:		Volume:	350-630	gpm	Slide ROP:	N/A	Circ. Hrs:	3.83
Rig:	Millenium	ABH Set:		RPM S/DH:	30/70	ļ	Rot. ROP:	N/A	Tot. D&C:	12.23
	Victor Medina	Vendor		Avg. WOB:	37547	kibf	Avg. ROP:	0.0	Inc. In:	8.90
DD:	James Cockroft	Reac. Torq.:		SPP Off/On:	5100/5100	ļ	Bit to Svy:		Azm. In:	316.00
	Bruno Lima	Mud Type:	Paradrill	PV/YP:	17/28		Sand%		Inc. Out:	8.90
	Marcus Tumer	Mud Wt:	12.7	Chlorides:	41000		Solid cont:	20.00%	Azm. Out:	316.00
`	Todd Robichaux	Mud Vis:	112	WL:	6.0@250		Oil/Water:		MWD BHT:	38.5
String Wt:		P/U Wt.:		S/O Wt.:			BHA Wt.:		Rot. Torq:	2000-5000
Motor RPM	TFA / Nozzles					ECORD				FAILED
Rev / gal	0.798 / 1x14, 5x13	INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
		1	1	WT	S	Х	l	CT	ROP	N/a
ltem	Description	Vendor	Serial #	FN L / OD	OD	ID	B. Conn	T. Conn	Length	Cum Len
1	8 1/2" DS162 1X14, 5X13	SLB	201533		8 1/2"	<u> </u>		4 1/2 Reg P	0.22	0.22
2	PD675 Bias Unit	Anadrill	60278		6 11/16"	tool	4 1/2 Reg B	4 1/2 IF B	0.71	0.93
3	PD675 Extension Sub	Anadrill	60166		6 11/16"	tool	4 1/2 IF P	4 1/2 IF P	0.32	1.25
4	PD675 CC w/CU	Anadrill	60028 / 30		6 11/16"	tool	4 1/2 IF B	4 1/2 IF B	2.95	4.20
5	8 3/8" NM IBS	SD	13062	0.69 / 6 15/16*	6 15/16"	2 13/16"	4 1/2 IF P	4 1/2 IF B	1.26	5.46
6	Float Sub	SLB	SD 2537		6 15/16"	2 13/16"	4 1/2 IFP	4 1/2 IF B	0.73	6.19
7	ARC675	SLB	035	0.45 / 6 3/4*	6 3/4"	tool	4 1/2 IFP	5 1/2 FHB	5.87	12.06
8	8 3/8" MWD w/ stabilizer	SLB	335	0.03 / 6 3/4	6 7/8"	tool	5 1/2 FHP	5 1/2 FH P	8.34	20.40
9	Isonic	SLB	634		6 3/4"	tool	5 1/2 FHB	5 1/2 FH B	7.23	27.63
10	x-o	SLB	36175-5		6 3/4"	3 15/16"	5 1/2 FH P	4 1/2 IFB	0.42	28.05
11	8 1/4" String Stab	SD	12608		6 5/8*	3"	4 1/2 IFP	4 1/2 IFB	1.43	29.48
12	15 HWDP	Transocean			5"	3"	4 1/2 IFP	4 1/2 IFB	140.68	170.16
13	Jars				6 5/8"	4 3/4"	4 1/2 IFP	4 1/2 IFB	9.76	179.92
14	5 HWDP	Transocean			5*	3*	4 1/2 IFP	4 1/2 IFB	46.82	226.74
15										
16										
17										
18										
19										
20										
21										
22										
23										-
24		_				1				
25										
26						1				
27										
28										
29										
30										
	вотто	M HOLE ASS	EMBLY (OBJI	ECTIVES vs R	ESULTS)			BIT TO KEY IT	EM (STBS. TO	MIDPOINT)
This BHA v	vas intended to drill out					directional v	vork was	Btm. Stab.		4.26
going to be	performed but due to v	ery low ROF	, it was pull	ed out. Som	e worn teet	h were found	d as well as	APWD		7.93
chipped on	es. PowerDrive was for	and with one	seal slightly	worn out ar	nd is going t	o be change	ed for next	Resistivity		8.54
run as well	as the bit, a mill tooth of	ne will be us	sed.					Gamma Ray		8.62
								D&I survey	·	16.18
								Mid. Stab.		20.20
								Delta T		24.57
								Top Stab.		28.56
								. 55 565.		20.50
										
									-	
										
1								r		

JSO#	630415171	Depth in:	4418	Depth out:	4424		Mtr. Drlg	6	BHA#	7
	Newburn H-23	Deptir III.	2-Jul-02	Deptir out:	4-Jul-02		Days:	3	Hole Size:	8.5
		Slide Dist.:	2-0ui-02		0.00	Hrs.		N/A	PDM Run #:	N/a
<u>.</u>	ChevronTexaco			Slide Hrs.:			Steering %			
	Newburn Deepwater	Rotate Dist.:	6.0	Rot. Hrs.:	1.74	Hrs.	Rotate %	100%	Orlg Hrs:	1.74
	Nova Scotia	R/S config:		Volume:	575.0	gpm	Slide ROP:	N/A	Circ. Hrs:	3.83
Rig:	Millenium	ABH Set:		RPM S/DH:	80/0	0	Rot. ROP:	2.5	Tot. D&C:	24.72
DD:	Victor Medina	Vendor		Avg. WOB:	15	klbf	Avg. ROP:	N/A	Inc. in:	8.90
DD:	James Cockroft	Reac. Torq.:		SPP Off/On:	5070/5070		Bit to Svy:	16.18	Azm. In:	316.00
MWD:	Bruno Lima	Mud Type:	Paradrill	PV/YP:	17/28		Sand%		Inc. Out:	8.90
MWD:	Marcus Tumer	Mud Wt:	12.7	Chlorides:	41000		Solid cont:	20.00%	Azm. Out:	316.00
Co. Rep:	Todd Robichaux	Mud Vis:	112	WL:	6.0@250		Oil/Water:		MWD BHT:	
String Wt:		P/U Wt.:		S/O Wt.:			BHA Wt.:		Rot. Torq:	1800-4500
Motor RPM	TFA / Nozzles				BIT RI	ECORD				FAILED
	0.747 / 3 x 18	INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
Rev / gal	U.141 1 3 X 16	1	1	WT	A	E	GAUGE	NO	ROP	N/a
16	December 2				OD	ID	P. Conn			
Item	Description	Vendor	Serial #	FN L / OD		טו	B. Conn	T. Conn	Length	Cum Len
1	8 1/2" MXC1	Hughes	J23DH		8 1/2"			4 1/2 Reg P	0.23	0.2
2	PD675 Bias Unit	Anadrill	60057	ļ	6 11/16"	tool	4 1/2 Reg B	4 1/2 IF B	0.71	0.9
3	PD675 Extension Sub	Anadrill	60034	ļ	6 11/16"	tool	4 1/2 IF P	4 1/2 IF P	0.31	1.3
4	PD675 CC w/CU	Anadrill	60028 / 30		6 11/16"	tool	4 1/2 IF B	4 1/2 IF B	2.95	4.
5	8 3/8" NM IBS	SD	13062	0.69 / 6 15/16"	6 15/16*	2 13/16"	4 1/2 IF P	4 1/2 IF B	1.26	5.4
6	Float Sub	SLB	SD 2537		6 15/16*	2 13/16"	4 1/2 IFP	4 1/2 IF B	0.73	6.
7	ARC675	SLB	035	0.45 / 6 3/4"	6 3/4*	tool	4 1/2 IFP	5 1/2 FHB	5.87	12.0
8	8 3/8" MWD w/ stabilizer	SLB	335	0.03 / 6 3/4	6 7/8*	tool	5 1/2 FHP	5 1/2 FH P	8.34	20.4
9	Isonic	SLB	634		6 3/4"	tool	5 1/2 FHB	5 1/2 FH B	7.23	27.6
10	X-O	SLB	36175-5		6 3/4"	3 15/16"	5 1/2 FH P	4 1/2 IFB	0.42	28.0
11	 	SD				3"	4 1/2 IFP		1.43	29.4
	8 1/4" String Stab		12608		6 5/8"	†		4 1/2 IFB		
12	15 HWDP	Transocean			5*	3"	4 1/2 IFP	4 1/2 IFB	140.68	170.
13	Jars				6 5/8"	4 3/4"	4 1/2 IFP	4 1/2 IFB	9.76	179.9
14	5 HWDP	Transocean			5*	3*	4 1/2 IFP	4 1/2 IFB	46.82	226.7
15										
16										
17										
18										
19								i		
20	<u> </u>									
21						 		<u> </u>		
22										
	 	 							 	
23						 		 		
24		ļ				-		ļ		
25						 	 			
26						<u> </u>				
27						<u> </u>				
28									1	
29										
30										
	вотто	M HOLE ASSI	EMBLY (OBJI	ECTIVES vs R	ESULTS)			BIT TO KEY IT	EM (STBS. TO	MIDPOINT)
his BHA v	was intended to clean or					sh down to l	bottom (@	Btm. Stab.		4.26
	drill 3m new formation t							APWD		7.93
	to POOH was taken to			, ,			•	Resistivity		8.54
	e drilling out the float co		' shaped pi	ece of alumi	nium and ar	nd intact alur	ninium rina		*************	
	ated out of the hole. Th							Gamma Ray		8.62
	ause for the sudden lac							D&I survey		16.18
	and the cause of the trip		, p. •					Mid. Stab.		20.20
		•						Delta T		24.57
								Top Stab.		28.56
										L

Operato Field Province Rig	630415171	Depth in:	4424	Depth out:	4441		Mtr. Drlg	17	BHA#	8
Operato Field Province Rig	Manda H 22		4-Jul-02	Date Out:	5-Jul-02		Days:	2	Hole Size:	8.5
Field Province Rig	Newburn H-23	Date In: Slide Dist.:	4-Jul-02 N/A	Slide Hrs.:	5-Jul-02 N/A	Hrs.	Steering %	N/A	PDM Run #:	N/A
Province Rig	ChevronTexaco		17.0	Rot. Hrs.:	1.74	Hrs.	Rotate %	100%	Drig Hrs:	1.74
Rig	Newburn Deepwater	Rotate Dist.:	17.0 N/A	Volume:	575.0	gpm	Slide ROP:	N/A	Circ. Hrs:	3.83
		R/S config:				0 O	Rot. ROP:	9.8	Tot. D&C:	5.57
ממ	: Millenium	ABH Set:	N/A	RPM S/DH:	80/150					8.90
	: Victor Medina	Vendor	N/A	Avg. WOB:	8-10	kibf	Avg. ROP:	9.8	Inc. In:	316.00
	: James Cockroft	Reac. Torq.:	N/A	SPP Off/On:	5045/5070		Bit to Svy:	16.2	Azm. In:	
MWD	: Bruno Lima	Mud Type:	Paradrill	PV/YP:	18/24		Sand%		Inc. Out:	8.90
MWD	: Marcus Tumer	Mud Wt:	13	Chlorides:	39000		Solid cont:	21.00%	Azm. Out:	316.00
Co. Rep	: Todd Robichaux	Mud Vis:	104	WL:	6.8		Oil/Water:	77/23	MWD BHT:	
String Wt	:	P/U Wt.:		S/O Wt.:			BHA Wt.:	27k	Rot. Torq:	3-5k
Motor RPM	TFA / Nozzles				BIT R	ECORD				FAILED
Rev / gal	0.704 / 2x11,4x13	INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
		1	1	WT_	Α	X	1	CT	DTF	NO
Item	Description	Vendor	Serial #	FN L / OD	OD	ID	B. Conn	T. Conn	Length	Cum Len
1	8 1/2" DS162 2X11, 4X13	SLB	201533		8 1/2"	_		4 1/2 Reg P	0.22	0.2
2	PD675 Bias Unit	Anadrill	60057		6 11/16"	tool	4 1/2 Reg B	4 1/2 IF B	0.71	0.9
3	PD675 Extension Sub	Anadrill	60034		6 11/16°	tool	4 1/2 IF P	4 1/2 IF P	0.31	1.2
4	PD675 CC w/CU	Anadrill	60028 / 30		6 11/16"	tool	4 1/2 IF B	4 1/2 IF B	2.95	4.1
5	8 3/8" NM IBS	SD	13062	0.69 / 6 15/16*	6 15/16"	2 13/16"	4 1/2 IF P	4 1/2 IF B	1.26	5.4
6	Float Sub	SLB	SD 2537		6 15/16"	2 13/16"	4 1/2 IFP	4 1/2 IF B	0.73	6.1
7		SLB	55	0.45 / 6 3/4"	6 3/4"	tool	4 1/2 IFP	5 1/2 FHB	5.85	12.0
	ARC675	SLB	335	0.03 / 6 3/4	6 7/8"	tool	5 1/2 FHP	5 1/2 FH P	8.34	20.3
8	8 3/8" MWD w/ stabilizer		649	0.03703/4	6 3/4"	tooi	5 1/2 FHB	5 1/2 FH B	7.22	27.5
9	Isonic	SLB				3 15/16"		4 1/2 IFB	0.42	28.0
10	x-o	SLB	36175-5		6 3/4"	 	5 1/2 FH P		1.43	29.4
11	8 1/4" String Stab	SD	12608		6 5/8"	3"	4 1/2 IFP	4 1/2 IFB	†	
12	21 HWDP	Transocean		ļ	5*	3"	4 1/2 IFP	4 1/2 IFB	197.21	226.6
13	Jars	Drilco	233480		6 5/8"	4 3/4"	4 1/2 IFP	4 1/2 IFB	9.76	236.4
14	5 HWDP	Transocean			5*	3"	4 1/2 IFP	4 1/2 IFB	46.82	283.2
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
							1			
		1								
25			 							
25 26		1	ŀ	I .						
25 26 27		 				 				
25 26 27 28										
25 26 27 28 29										
25 26 27 28		M UCL E AGE	EMPLY (OD-	ECTIVES vo	EQ[TQ]			RIT TO KEY I	FM (STRS TO	MIDPOINT
25 26 27 28 29 30	BOTTO	OM HOLE ASS	EMBLY (OBJ	ECTIVES vs R	ESULTS)	see how it w	vas		TEM (STBS. TO	T
25 26 27 28 29 30	was expected to build a	nd turn right,	but due to I	MWD failure	we couldn't	see how it v	vas a possible	Btm. Stab.	TEM (STBS. TO	4.25
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas a possible	Btm. Stab. APWD	TEM (STBS. TO	4.25 7.94
25 26 27 28 29 30 The BHA	was expected to build a	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas a possible	Btm. Stab. APWD Resistivity	EM (STBS. TO	4.25 7.94 8.55
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas r a possible	Btm. Stab. APWD Resistivity Gamma Ray	TEM (STBS. TO	4.25 7.94 8.55 8.63
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas a possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas a possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab.	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas ra possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22 24.57
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas · a possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab.	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas · a possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22 24.57
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas · a possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22 24.57
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas · a possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22 24.57
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas · a possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22 24.57
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas · a possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22 24.57
25 26 27 28 29 30 The BHA	was expected to build an g since it was impossible	nd turn right, to get a sur	but due to I vey. The pip	MWD failure be was work	we couldn't	see how it v	vas ra possible	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.20 20.22 24.57

JSO# 6	630415171	Depth in:	4441	Depth out:	5425		Mtr. Drlg	984	BHA#	9
Well Name:	Newburn H-23	Date In:	5-Jul-02	Date Out:	18-Jul-02		Days:	14	Hole Size:	8.5
	ChevronTexaco	Slide Dist.:	0.0	Slide Hrs.:	0.00	Hrs.	Steering %	0%	PDM Run #:	N/A
		Rotate Dist.:	984.0	Rot. Hrs.:	62.40	Hrs.	Rotate %	100%	Drig Hrs:	62.40
-	Newburn Deepwater				525.0		Slide ROP:	N/A	Circ. Hrs:	109.70
	Nova Scotia	R/S config:	N/A	Volume:		gpm			 	
	Millenium	ABH Set:	N/A	RPM S/DH:	150	0	Rot. ROP:	15.8	Tot. D&C:	172.10
	Victor Medina	Vendor	N/A	Avg. WOB:	13	klbf	Avg. ROP:	307.5	Inc. In:	15.00
DD:	James Cockroft	Reac. Torq.:	N/A	SPP Off/On:	5450	5450	Bit to Svy:	16.21	Azm. In:	308.10
MWD:	Bruno Lima	Mud Type:	Paradril	PV/YP:	21	21	Sand%	-	Inc. Out:	18.70
MWD:	Marcus Turner	Mud Wt:	14.9	Chlorides:			Solid cont:	28.50%	Azm. Out:	292.30
Co. Rep:	Tom Jones	Mud Vis:	95	WL:	4		Oil/Water:		MWD BHT:	85.0
String Wt:	543.0	P/U Wt.:	590.0	S/O Wt.:	553.0		BHA Wt.:		Rot. Torq:	N/A
lotor RPM	TFA / Nozzles				BIT R	ECORD				FAILED
Rev / gal	0.704 / 2x11,4x13	INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
		1	1	NO	-	х	IN	NO	TD	NO
Item	Description	Vendor	Serial #	FN L / OD	OD	ID	B. Conn	T. Conn	Length	Cum Len
	8 1/2" DS162 2X11, 4X13	SLB	201533		8 1/2"			4 1/2 Reg P	0.22	0.
	PD675 Bias Unit	Anadrill	60057		6 11/16"	tool	4 1/2 Reg B	4 1/2 IF B	0.71	0.
f	PD675 Extension Sub	Anadrill	60034		6 11/16"	tool	4 1/2 IF P	4 1/2 IF P	0.71	1.
				 		tool			2.95	4.
	PD675 CC w/CU	Anadrill	60081/137	0.60 / 0.45/40	6 11/16"		4 1/2 IF B	4 1/2 IF B	 	
	8 3/8" NM IBS	SD	13062	0.69 / 6 15/16*	6 15/16"	2 13/16"	4 1/2 IF P	4 1/2 IF B	1.26	5.
	Float Sub	SLB	SD 2537		6 15/16"	2 13/16"	4 1/2 IFP	4 1/2 IF B	0.73	6.
	ARC675	SLB	55	0.45 / 6 3/4"	6 3/4"	tool	4 1/2 IFP	5 1/2 FHB	5.85	12.
8	8 3/8" MWD	SLB	F 765		6 7/8"	tool	5 1/2 FHP	5 1/2 FH P	8.34	20.
9	Isonic	SLB	649		6 3/4"	tool	5 1/2 FHB	5 1/2 FH B	7.23	27.
10	x-0	SLB	36175-5		6 3/4"	3 15/16"	5 1/2 FH P	4 1/2 IFB	0.42	28.
11	8 1/4" String Stab	SD	12608		6 5/8"	3"	4 1/2 IFP	4 1/2 IFB	1.43	29.
12	21 HWDP	Transocean		ļ	5"	3*	4 1/2 IFP	4 1/2 IFB	197.21	226
13	Jars	Drilco	233480		6 5/8"	4 3/4"	4 1/2 IFP	4 1/2 IFB	9.76	236.
14	5 HWDP	Transocean	1		5*	3"	4 1/2 IFP	4 1/2 IFB	46.82	283.
15										
16	-									
17						<u> </u>		·		
18						<u> </u>				
19										
						 				
20						1				
21						ļ				
22		-				}	<u> </u>			
23		ļ								
							1			
24						ļ	ļ			
24 25										
25										
25 26										
25 26 27										
25 26 27 28										
25 26 27 28 29	BOTTC	DM HOLE ASS	EMBLY (OBJ	ECTIVES vs R	ESULTS)			BIT TO KEY IT	EM (STBS. TO	MIDPOINT)
25 26 27 28 29 30	BOTTO degrees at a rate of 2.4					n azimuth 30	7 degrees.	BIT TO KEY II Btm. Stab.	EM (STBS. TO I	MIDPOINT) 4.25
25 26 27 28 29 30 uild to 25 o		per 30m wh	nile intersec	ting two targe	ets along ar			Btm. Stab.	TEM (STBS. TO	4.25
25 26 27 28 29 30 wild to 25 0 itially the last then re	degrees at a rate of 2.4 PowerDrive was put in educed to 60 - 20% for	per 30m whato and 80% to subsequent:	nile intersect ouild setting sets, while t	ting two targe to achieve the he toolface v	ets along ar ne desired E vas directed	BUR's. The to d at an avera	ool setting ge 300	Btm. Stab. APWD	EM (STBS. TO	4.25 7.94
25 26 27 28 29 30 wild to 25 0 itially the last then re	degrees at a rate of 2.4 PowerDrive was put in	per 30m whato and 80% to subsequent:	nile intersect ouild setting sets, while t	ting two targe to achieve the he toolface v	ets along ar ne desired E vas directed	BUR's. The to d at an avera	ool setting ge 300	Btm. Stab. APWD Resistivity	TEM (STBS. TO	4.25 7.94 8.55
25 26 27 28 29 30 uild to 25 of itially the last then regrees to or green to or green to	degrees at a rate of 2.4 PowerDrive was put in educed to 60 - 20% for	per 30m what per 30m what and 80% to subsequent and right hand	nile intersect ouild setting sets, while t walk tende	ting two targe to achieve the he toolface vency. Once the	ets along ar ne desired E vas directed ne inclinatio	BUR's. The to d at an avera n was built th	ool setting ge 300 ne tool	Btm. Stab. APWD Resistivity Gamma Ray	EM (STBS TO	4.25 7.94 8.55 8.63
25 26 27 28 29 30 uild to 25 of itially the least then regrees to ettings ran as done to	degrees at a rate of 2.4 PowerDrive was put in aduced to 60 - 20% for compensate for a stronged between 20 - 80% to drill a short tangent s	t per 30m what to and 80% to subsequent and right hand with most of ection and the	nile intersect ouild setting sets, while t walk tender f the sets in ten control t	ting two target to achieve the he toolface w ncy. Once the the left to up he drop rate	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey	EM (STBS TO	4.25 7.94 8.55 8.63 16.21
25 26 27 28 29 30 uild to 25 oitially the last then reegrees to ettings rankas done to	degrees at a rate of 2.4 PowerDrive was put in aduced to 60 - 20% for compensate for a stronged between 20 - 80% to drill a short tangent s	t per 30m what to and 80% to subsequent and right hand with most of ection and the	nile intersect ouild setting sets, while t walk tender f the sets in ten control t	ting two target to achieve the he toolface w ncy. Once the the left to up he drop rate	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab.	EM (STBS. TO	4.25 7.94 8.55 8.63 16.21 20.22
25 26 27 28 29 30 uild to 25 ditially the last then reegrees to ettings ran as done to lool perform	degrees at a rate of 2.4 PowerDrive was put in educed to 60 - 20% for compensate for a stror aged between 20 - 80%	t per 30m what to and 80% to and 80% to subsequent and right hand to with most of ection and that's were recompleted.	nile intersectionid setting sets, while the walk tender of the sets in the control the sets. The	ting two target to achieve the toolface whocy. Once the left to up the drop rate BHA was PC	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	EM (STBS. TO	4.25 7.94 8.55 8.63 16.21 20.22 24.58
25 26 27 28 29 30 uild to 25 ditially the last then reegrees to ettings ran as done to lool perform	degrees at a rate of 2.4 PowerDrive was put in aduced to 60 - 20% for compensate for a stronged between 20 - 80% to drill a short tangent shed well and all downling.	t per 30m what to and 80% to and 80% to subsequent and right hand to with most of ection and that's were recompleted.	nile intersectionid setting sets, while the walk tender of the sets in the control the sets. The	ting two target to achieve the toolface whocy. Once the left to up the drop rate BHA was PC	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab.	EM (STBS. TO	4.25 7.94 8.55 8.63 16.21 20.22
25 26 27 28 29 30 uild to 25 of aitially the ras then reegrees to ettings ran ras done to pol perform	degrees at a rate of 2.4 PowerDrive was put in aduced to 60 - 20% for compensate for a stronged between 20 - 80% to drill a short tangent shed well and all downling.	t per 30m what to and 80% to and 80% to subsequent and right hand to with most of ection and that's were recompleted.	nile intersectionid setting sets, while the walk tender of the sets in the control the sets. The	ting two target to achieve the toolface whocy. Once the left to up the drop rate BHA was PC	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.21 20.22 24.58
25 26 27 28 29 30 uild to 25 ditially the least then regrees to ettings ran ras done to pol perform	degrees at a rate of 2.4 PowerDrive was put in aduced to 60 - 20% for compensate for a stronged between 20 - 80% to drill a short tangent shed well and all downling.	t per 30m what to and 80% to and 80% to subsequent and right hand to with most of ection and that's were recommendations.	nile intersectionid setting sets, while the walk tender of the sets in the control the sets. The	ting two target to achieve the toolface whocy. Once the left to up the drop rate BHA was PC	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.21 20.22 24.58
25 26 27 28 29 30 uild to 25 ditially the least then regrees to ettings ran ras done to pol perform	degrees at a rate of 2.4 PowerDrive was put in aduced to 60 - 20% for compensate for a stronged between 20 - 80% to drill a short tangent shed well and all downling.	t per 30m what to and 80% to and 80% to subsequent and right hand to with most of ection and that's were recommendations.	nile intersectionid setting sets, while the walk tender of the sets in the control the sets. The	ting two target to achieve the toolface whocy. Once the left to up the drop rate BHA was PC	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	TEM (STBS. TO	4.25 7.94 8.55 8.63 16.21 20.22 24.58
25 26 27 28 29 30 uild to 25 of itially the least then regrees to ettings ranges done to lool perform	degrees at a rate of 2.4 PowerDrive was put in aduced to 60 - 20% for compensate for a stronged between 20 - 80% to drill a short tangent shed well and all downling.	t per 30m what to and 80% to and 80% to subsequent and right hand to with most of ection and that's were recommendations.	nile intersectionid setting sets, while the walk tender of the sets in the control the sets. The	ting two target to achieve the toolface whocy. Once the left to up the drop rate BHA was PC	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	EM (STBS. TO	4.25 7.94 8.55 8.63 16.21 20.22 24.58
25 26 27 28 29 30 silid to 25 of titially the least hen regrees to ettings ranges done to ol perform	degrees at a rate of 2.4 PowerDrive was put in aduced to 60 - 20% for compensate for a stronged between 20 - 80% to drill a short tangent shed well and all downling.	t per 30m what to and 80% to and 80% to subsequent and right hand to with most of ection and that's were recommendations.	nile intersectionid setting sets, while the walk tender of the sets in the control the sets. The	ting two target to achieve the toolface whocy. Once the left to up the drop rate BHA was PC	ets along ar ne desired E vas directed ne inclinatio oper left por in a 2 degre	BUR's. The to d at an avera n was built the tion of the m see per 30m r	pool setting ge 300 ne tool ap. This ange. The	Btm. Stab. APWD Resistivity Gamma Ray D&I survey Mid. Stab. Delta T	EM (STBS. TO	4.25 7.94 8.55 8.63 16.21 20.22 24.58

JSO#	630415171	Depth in:	5425	Depth out:	5425		Mtr. Drlg	0	BHA#	10
	Newburn H-23	Deptir III.	19-Jul-02	Deptir out:	22-Jul-02	1	Days:	4	Hole Size:	8.5
	ChevronTexaco	Slide Dist.:	0.0	Slide Hrs.:	0.00	Hrs.	Steering %	#DIV/0!	PDM Run #:	8.5
	Newburn Deepwater	Rotate Dist.:	0.0	Rot. Hrs.:	0.00	Hrs.	Rotate %	#DIV/0!	Drlg Hrs:	0.00
	Nova Scotia	R/S config:	N/A	Volume:	0.00	gpm	Slide ROP:	N/A	Circ. Hrs:	50.00
	Millenium	ABH Set:	N/A	RPM S/DH:		0	Rot. ROP:	N/A	Tot. D&C:	50.00
	Shane Vercammen	Vendor	N/A	Avg. WOB:		klbf	Avg. ROP:	0.0	Inc. in:	18.70
DD:		Reac. Torq.:	N/A	SPP Off/On:		KIDI	Bit to Svy:	N/A	Azm. in:	292.30
	Muyiwa Akinpelu	Mud Type:	Paradrill	PV/YP:	29/11		Sand%		Inc. Out:	18.70
	Marcus Turner	Mud Wt:	14.9	Chlorides:	39000		Solid cont:	26.60%	Azm. Out:	292.30
	Tom Jones	Mud Vis:	114	WL:	3.2		Oil/Water :	20.0078	MWD BHT:	N/A
String Wt:		P/U Wt.:	117	S/O Wt.:	0.2		BHA Wt.:		Rot. Torq:	
Motor RPM	TFA / Nozzles	170 ***		G/O 114::	BIT P	ECORD	Di ii (VV C.		rtot. rorq.	FAILED
Rev / gal	II A / NOZZIES	INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
N/A		MALK	OUILK	MAJOR		BEARING	GAUGE	OTTLEX	REAGON	1237110
Item	Description	Vendor	Serial #	FN L / OD	OD	1D	B. Conn	T. Conn	Length	Cum Len
1	8 1/2 * Bit	Vendor	Oction #		8 1/2	1 1/2	B. 001111	4.5 Reg P	0.25	0.25
2	STAB. (NB w / FLOAT)	SD	SD-12881		6 5/8	2 3/4	4.5 Reg B	4.5 IF Box	2.76	3.01
3	1 HWDP	Transocean	JU-12001	 	5"	3"	4.5 Reg B 4 1/2 IFP	4.5 IF BOX 4 1/2 IFB	9.39	12.40
4	8 3/8" NM IBS	SD	13062	0.69 / 6 15/16"	6 15/16"	2 13/16"	4 1/2 IF P	4 1/2 IF B	1.26	13.66
	T	Transocean	13002	0.0976 13/16	5"	3"		4 1/2 IFB		
<u>5</u>	20 HWDP Jars	Drilco	233480		6 5/8"	4 3/4"	4 1/2 IFP 4 1/2 IFP	4 1/2 IFB 4 1/2 IFB	187.82 9.76	201.48 211.24
7	5 HWDP	Transocean	233400		5"	3"	4 1/2 IFP	4 1/2 IFB	46.82	258.06
8	J.1110F	manaccean					7 112 157	7 112 110	40.02	230.00
9						 				
10	<u> </u>					†				
	 					 	 			
11						 	l			
12						 	 		 	
13						 	 		 	
14						 	<u> </u>			
15						<u> </u>				
16			·			1				
17									 	
18						 	 		!	
19					"	-			 	
20						 	-	-	 	
21										
22				 		 			 	
23	 									
24				 						
25						 			 	
26				 			-		 	
27		 		 		 	 	ļ	 	
28					 	 				
29	<u> </u>					 				
30		M HOLE ASS	I MDI V (OR-II	I CCTIVES	ECULTO	1		DITTO	CM (CTDO TO	MIDDOINE
Accombly	will be used to clean ho								TEM (STBS. TO	
Lasellinia ,	wiii ne asea to clean noi	e and roggii	ig / piloi lo	rammy casi	··9·			Btm. Stab.		4.25
								APWD		7.94
								Resistivity		8.55
								Gamma Ray		8.63
								D&I survey		16.21
								Mid. Stab.		20.22
								Delta T		24.58
								Top Stab.		28.56
1										
1										
1										
1								<u> </u>		
i								1.		l

JSO#	630415171	Depth in:	5427	Depth out:	5480		Mtr. Drlg	53	BHA#	11
	Newburn H-23	Date In:	31-Jul-02	Date Out:	2-Aug-02		Days:	3	Hole Size:	6.5
	ChevronTexaco	Slide Dist.:	0.0	Slide Hrs.:	0.00	Hrs.	Steering %	0%	PDM Run #:	4
	Newburn Deepwater	Rotate Dist.:	53.0	Rot. Hrs.:	8.00	Hrs.	Rotate %	100%	Drig Hrs:	8.00
	Nova Scotia	R/S config:	4/5 XP	Volume:	220.0	gpm	Slide ROP:	N/A	Circ. Hrs:	14.50
	Millenium	ABH Set:	0.00	RPM S/DH:	80	242	Rot. ROP:	6.6	Tot. D&C:	22.50
		Vendor	SLB	Avg. WOB:	7	klbf	Avg. ROP:	16.6	inc. in:	15.33
	Shane vercammen James Cockroft	Reac. Torq.:	0.0	SPP Off/On:	4351/4500	NID!	Bit to Svy:	16.21	Azm. In:	294.98
			Domedrill	PV/YP:	37/11		Sand%		Inc. Out:	
	Olumuyiwa Akinpelu	Mud Type:	Paradrill		35000		Solid cont:	29.00%	Azm. Out:	
	Todd Wensley	Mud Wt: Mud Vis:	15.1 115	Chlorides: WL:	3.2		Oil/Water:	53/47	MWD BHT:	125.0
	Tom Jones 484.0	P/U Wt.:	113	S/O Wt.:	3.2		BHA Wt.:	33,47	Rot, Tora:	4100
String Wt:		P/O VV		3/O W	DIT DI	ECORD	DI IA VVI		rtot. roiq.	FAILED
Motor RPM	TFA / Nozzles	ININED	OUTED	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
Rev / gal	0.92 in²	INNER	OUTER	MAJOR NO	A	X	GAUGE	NO	DMF	YES
1.1	3 x 20's	1	1				S. Conn			
Item	Description	Vendor	Serial #	FN L / OD	OD	1D	B. Conn	T. Conn	Length	Cum Len
1	PDC Bit 2643	Security	702953		6 1/2	N/A		3.50 REG Pin	0.23	0.23
2	A475M4560XP (w/ 6 3/8")	SLB	475A2563	5.8	4 3/4	N/A	3.50 REG Box	3.50 IF Box	7.23	7.46
3	Float sub (TSF float)	SLB	2524	N/A	4 3/4	2 1/2	3.50 IF Pin	3.50 IF Box	0.71	8.17
4	iLS (6 3/8")	SD	14433	0.76	4 3/4	2 1/8	3.50 IF Pin	3.50 IF Box	1.84	10.01
5	IMPulse	SLB	189	7.5	4 3/4	N/A	3.50 IF Box	3.50 IF Box	10.64	20.65
6	APWD	SLB	29	3.32	4 3/4	N/A	3.50 IF Box	3,50 IF Box	4.13	24.78
7	ILS (6 3/8")	SD	14434	3/4	4 3/4	2 1/4	3.50 IF Pin	3.50 IF Box	1.84	26.62
8	DFS (w/ screen)	SD	31	N/A	4 3/4	2 1/4	3.50 IF Pin	3.50 IF Box	0.94	27.56
9	4 3/4" DC's (9 joints)	RIG			4 3/4	2 3/8	3.50 IF Pin	3.50 IF Box	84.00	111.56
10	Crossover	RIG	WS26957		5	2 1/4	3.50 IF Pin	4.00 HT40 Box	1.10	112.66
11	4" HWDP (18 joints)	RIG					4.00 HT40 Pin	4.00 HT40 Box	168.38	281.04
12	Hydraulic Jar	RIG	WS-2	<u> </u>	5 1/8	2	4.00 HT40 Pin	4.00 HT40 Box	9.46	290.50
13	4" HWDP (11 joints)	RIG				<u></u>	4.00 HT40 Pin	4.00 HT40 Box	103.12	393.62
14	4" 14.0 lb DP (prem.) (273 joints)	RIG					4.00 HT40 Pin	4.00 HT40 Box	2619.36	3012.98
15	Crossover	RIG	SW26921		6 3/4	2 1/2	4.00 HT40 Pin	5.50 FH Box	1.40	3014.38
16								l		
17										
18										
19										
20										
21						1				
22										
23				†						
24				<u> </u>	· · · · · · · · · · · · · · · · · · ·	1				
25				†		†			1	
26						<u> </u>				
				 			 		İ	
27 28	 					† · · · · · · · · · · · · · · · · · · ·	†		1	
	 			 		†	 			
29		 		 		1				
30		M HOLE ACC	EMPLY (OR	ECTIVES vs R	ESILTE		<u> </u>	BIT TO KEY I	TEM (STBS. TO	MIDPOINT
Accombine	will be used to drill to TE				COULTO)			BTM STAB.	-m (3163. IU	1.47
On hottom	the MWD tool's signal v	vas too weel	k to be decr	oded. The de	cision was	made to drill	ahead to	MID STAB.		
5500m th	e deepest that could be	drilled with o	ut taking a	survey. Near	r crew chan	ge for the ric	crews at			9.09
annmy 54	79m, the motor stalled.	This was no	t noticed for	approx. 10r	nin. During	this time the	SPP bled	RESISTIVITY		1
back to ne	ar the normal on bottom	pressure. T	he strina wa	as picked up	and drilling	was attemp	ted. Though	D&1		13.96
the torque	returned to normal and	the different	ial pressure	of 200 psi w	as seen the	ROP was v	ery low, 1-2	GAMMA		14.63
m/hr. The	ROP before the stall had	d been appro	ox. 14 m/hr.	The desision	n was made	to POOH fo	or the	APVVD		21.83
motor. Wh	ile circulating the cutting	s out of the	riser a fair a	amount of sta	ator rubber v	was recovere	ed at the	TOP STAB.		25.70
shakers. A	t surface the motor slee	ve was remo	oved and the	e motor laid	down withou	ut rotating th	e bit box.			
	was dry when it was bro					=		ļ		
								<u> </u>		
I										ļ
I								i		1

JSO#	630415171	Depth in:	5480	Depth out:	5786		Mtr. Drlg	306	BHA#	12
	Newburn H-23	Date In:	2-Aug-02	Date Out:	5-Aug-02		Days:	4	Hole Size:	6.5
	ChevronTexaco	Slide Dist.:	0.0	Slide Hrs.:	0.00	Hrs.	Steering %	0%	PDM Run #:	5
		Rotate Dist.:	306.0	Rot. Hrs.:	48.45	Hrs.	Rotate %	100%	Drig Hrs:	48,45
	Newburn Deepwater	R/S config:	4/5 XP	Volume:	235.0	gpm	Slide ROP:	N/A	Circ. Hrs:	15.08
	Nova Scotia			RPM S/DH:	90	258.5	Rot. ROP:	6.3	Tot. D&C:	63.53
	Millenium	ABH Set:	0.00			 				15.33
	James Cockroft	Vendor	SLB	Avg. WOB:	8	kibf	Avg. ROP:	95.6	Inc. In:	
DD:		Reac. Torq.:		SPP Off/On:	4351	4570	Bit to Svy:	16.21	Azm. In:	294.98
MWD:	Olumuyiwa Akinpelu	Mud Type:	Paradril	PV/YP:	36	11	Sand%		Inc. Out:	2.73
MWD:	Todd Wensley	Mud Wt:	15.3	Chlorides:	34000		Solid cont:	30.00%	Azm. Out:	337.00
Co. Rep:	Todd Robichaux	Mud Vis:	126	WL:	3.2		Oil/Water :	74/26	MWD BHT:	130.0
String Wt:	502.0	P/U Wt.:		S/O Wt.:		1	BHA Wt.:		Rot. Torq:	4500
Notor RPM	TFA / Nozzles				BIT R	ECORD				FAILED
Rev / gal	0.92 in²	INNER	OUTER	MAJOR	LOC	BEARING	GAUGE	OTHER	REASON	YES / NO
1.1	3 X 20	2	3	WT	A	X	ı	NO	PR	NO
Item	Description	Vendor	Serial #	FN L / OD	OD	1D	B. Conn	T. Conn	Length	Cum Len
1	6 1/2 * PDC Bit (FM 2643)	Security	702953		4 1/4	1 1/2		3.50 REG Pin	0.23	0.2
	A475M4560XP (w/ 6 3/8" S.Stab)	Anadrill	475A-2111	0.37 / 4 3/4	4 3/4	3 3/4	3.50 REG Box	3.50 IF Box	7.23	7.4
3	Float Sub	Anadrill	SD 2356		4 3/4	2 1/2	3.50 IF Pin	3.50 IF Box	0.77	8.2
		SD	14432	0.75 / 4 3/4	4 3/4	2 1/4	3.50 IF Pin	3.50 IF Box	1.84	10.0
4	Stabilizer (6 3/8")			0.101434	4 3/4	2 1/4	3.50 IF Box	3.50 IF Box	10.67	20.7
5	IMPulse	Anadrill	168			 		3.50 IF Box	4.16	24.9
6	VPWD	Anadrill	023		4 3/4	2 2/5	3.50 IF Box		1.84	26.7
	Stabilizer (6 3/8")	SD	14434		4 3/4	2 1/4	3.50 IF Pin	3.50 IF Box		
8	DFS	Anadrill	31		4 3/4	2 1/4	3.50 IF Pin	3.50 IF Box	0.93	27.6
9	4 3/4" DC's (9 joints)	TSF			4 3/4	2 3/8		3.50 NC38 (IF) Pin	84.20	111.8
10	Crossover	TSF	WS26957		5	2 1/4	3.50 IF Pin	4.00 HT40 Box	1.10	112.9
11	4" HWDP's (18 joints)	TSF			4	2 9/16	4.00 HT40 Pin	4.00 HT40 Box	168.38	281.3
12	Hydraulic Jar	Anadrill	WS2		5 1/8	2	4.00 HT40 Pin	4.00 HT40 Box	9.46	290.8
13	4" HWDP's (11 joints)	TSF			4	2 9/16	4.00 HT40 Pin	4.00 HT40 Box	103.12	393.9
14	4" 14.0 lb DP (prem.) (273 joints)	TSF			3 46/53	3 17/50	4.00 HT40 Pin	4.00 HT40 Box	2619.36	3013.2
15	Crossover	TSF			4 3/4	2 1/2	4.00 HT40 Pin	N- 50	1.40	3014.6
16										
17	<u> </u>									
18						1				
	 					†	 			
19										
20							 			
21					<u> </u>	 	 			
22		<u> </u>		 	-	+				
23				 		 	 			
24				ļ		ļ	<u> </u>		<u> </u>	
25				ļ	ļ <u> </u>		ļ		<u> </u>	
26		<u></u>				1	 			
27	<u> </u>			<u> </u>	ļ	_	ļ			<u> </u>
28			<u> </u>	<u> </u>	<u></u>	.	ļ			ļ
29										
30							<u> </u>		L	<u></u>
	вотто	M HOLE ASS	EMBLY (OBJ	ECTIVES vs R	RESULTS)			BIT TO KEY IT	EM (STBS. TO	MIDPOINT)
Assembly	will be used to drill to TI	while drop	oing or hold	ing inclinatio	n.			BTM STAB.		1.47
The assem	nbly had a moderate to	strong drop t	endancy of	approx. 0.8	to 1.8 deg/3	30m. The dro	p tendancy	MID STAB.		9.14
vas mostly	y affected by formation t	ype. ROP w	as variable	as was the a	mount of w	eight that co	uld be	RESISTIVITY		12.43
applied to	the bit. The formations t	hrough this	section were	e very ratty i	n sections o	ausing a nu	mber of	D&I		14.02
stalls and	requiring the WOB to be	adjusted fa	irly often. Hi	igh torque wa	as seen at	5786m and t	he bit was	GAMMA		14.69
oulled for p	penetration rate; however	er, upon insp	ection at su	ırface, the bi	t was seen	to have a fai	r bit of wear	APWD		21.94
on the nos	e cutters but was in fair	condition ov	erall. Little 1	to no wear w	as seen on	the string st	abilizers			
which were	e rerun. Stick slip was p	redominantly	high throu	gh out the ru	in.			TOP STAB.		25.82
			- '							
										ļ
										ļ
										ļ
										<u> </u>
								1		1

Well Name, Newburn N	JSO#	630415171	Depth in:	5786	Depth out:	6070		Mtr. Drlg	284	BHA#	13
Common/Demont/Hazado											
Freinical Discretation Desponated Rotate Biol. 284.0 Rot. Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na 100% Dirigh Hrs. 51.00 Ins. Rotate Na Ins. Ro							11				
Province Now Scola							i				
Rigi Milleoum		· · · · · · · · · · · · · · · · · · ·						t			
DD James Cockroft Newton Sus Ang WCB 5 abr Ang, RGP 88.8 Ne., Inc. 2.73							 				
DDD	Rig:	Millenium	ABH Set:	0.00	RPM S/DH:	90	275	Rot. ROP:	5.5	Tot. D&C:	63.78
MWID: Document D	DD:	James Cockroft	Vendor	SLB	Avg. WOB:	8	klbf	Avg. ROP:	88.8	inc. in:	2.73
MND Todd Wanuley	DD:		Reac. Torq.:		SPP Off/On:	4786	5044	Bit to Svy:	14.02	Azm. in:	337.00
Co. Repr Toda Poblishaux	MWD:	Olumuyiwa Akinpelu	Mud Type:	Paradril	PV/YP:	39	13	Sand%	0	Inc. Out:	1.73
String WIT	MWD:	Todd Wensley	Mud Wt:	15.8	Chlorides:	39000		Solid cont:	30.00%	Azm. Out:	175.46
Secondary Seco	Co. Rep:	Todd Robichaux	Mud Vis:	139	WL:	3.2		Oil/Water:	74/26	MWD BHT:	138.0
Secondary Seco	String Wt:		P/U Wt.:		S/O Wt.:			BHA Wt.:		Rot. Tora:	6500
No		TEA / Nozzles				RIT RI	COBD				FAILED
1.1 3.3 20			INNED	OUTER	MAJOR			GAUGE	OTHER	PEASON	
Tens											
1 6 1/2" PDC Bit (MA32PX) STC			·	•				· · · · · · · · · · · · · · · · · · ·			
2 Ar79MAS80VP (wf 5 78° S.Stab) Anadrill 475A14034 0.36 / 4 11/16 4 3/4 3 3.4 3.50 REG Box 3.50 IF Box 7.29 7.7 3 Float Sub Anadrill SD 2556 4 4 3/4 2 1/2 3.50 IF Box 0.77 84 4 34 2 1/4 3.50 IF Box 0.77 8 50 IF								B. Conn			
Septime							 				0.2
4 Stabilizer (6 3/8") SD 14432 0.75 / 4 3/4 4 3/4 2 1/4 3.50 IF Pin 3.50 IF Box 1.84 10 5 IMPulse SLB 189 7.5 4 3/4 NJA 3.50 IF Box 3.50 IF Box 10.64 20 6 VPVD Anadrill 023 4 4 3/4 2 2/5 3.50 IF Box 3.50 IF Box 10.64 20 7 Stabilizer (6 3/8") SD 14434 0.76 / 4 3/4 4 3/4 2 1/4 3.50 IF Pin 3.50 IF Box 1.80 I	2	A475M4560XP (w/ 5 7/8" S.Stab)	Anadrill	475A14034	0.36 / 4 11/16		3 3/4	3.50 REG Box	3.50 IF Box		7.4
S	3	Float Sub	Anadrill	SD 2356		4 3/4	2 1/2	3.50 IF Pin	3.50 IF Box	0.77	8.2
6 VPWD Anadrill 0.23	4	Stabilizer (6 3/8")	SD	14432	0.75 / 4 3/4	4 3/4	2 1/4	3.50 IF Pin	3.50 IF Box	1.84	10.0
Stabilizer (6 3/8") SD	5	IMPulse	SLB	189	7.5	4 3/4	N/A	3.50 IF Box	3.50 IF Box	10.64	20.7
8 DFS	6	VPWD	Anadrill	023		4 3/4	2 2/5	3.50 IF Box	3.50 IF Box	4.16	24.8
8 DFS	7	Stabilizer (6 3/8")	SD	14434	0.76 / 4 3/4	4 3/4	2 1/4	3.50 IF Pin	3.50 IF Box	1.84	26.7
9 4 3/4" DC's (9 joints) TSF	8		Anadrill	31		4 3/4	2 1/4		3.50 IF Box	0.93	27.0
10 Crossover TSF WS26957 5 2 1/4 3.50 IF Pin 4.00 HT40 Box 1.10 112 111 4" HWDP's (116 joints) TSF 4 4 2 9/16 4.00 HT40 Pin 4.00 HT40 Box 168.38 281 12 Hydraulic Jar Anadrill WS2 5 1/8 2 4.00 HT40 Pin 4.00 HT40 Box 9.46 290 13 4" HWDP's (11 joints) TSF 4 2 9/16 4.00 HT40 Pin 4.00 HT40 Box 103.12 393 14 4" 14.0 ib DP (prem.) (273 joints) TSF 3 46/53 3 17/50 4.00 HT40 Pin 4.00 HT40 Box 103.12 393 15 Crossover TSF 4 3/4 2 1/2 4.00 HT40 Pin 4.00 HT40 Box 2619.36 3013 15 Crossover TSF 4 3/4 2 1/2 4.00 HT40 Pin N-50 1.40 3014 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19							t	 			
11				W926067							
12		1		VV320937			 	· · · · · · · · · · · · · · · · · · ·			
13					 		t				
14 4*14.0 b DP (prem.) (273 joints) TSF 3 46/53 3 17/50 4.00 HT40 Pm 4.00 HT40 Box 2619.36 3013 15 Crossover TSF 4 3/4 2 1/2 4.00 HT40 Pm N-50 1.40 3014 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19				WS2			 				
15 Crossover TSF 4 3/4 2 1/2 4.00 HT40 Pin N-50 1.40 3014 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	13	4" HWDP's (11 joints)	TSF			4	2 9/16	4.00 HT40 Pin	4.00 HT40 Box		
16 17 18 19 20 21 22 23 24 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the medency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to affect the findency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to diffect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liled shortly affer drilling began and the tool stopped communicating appox. 8m before TD. TD was lated 5m earlier that originally proposed.	14	4" 14.0 lb DP (prem.) (273 joints)	TSF			3 46/53	3 17/50	4.00 HT40 Pin	4.00 HT40 Box	2619.36	3013.2
17 18 19 20 21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) sis assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the indency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to affect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool isled shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.	15	Crossover	TSF			4 3/4	2 1/2	4.00 HT40 Pin	N- 50	1.40	3014.6
18 19 20 21 22 23 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool isled shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.	16							i			
20 21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) seembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to affect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool like the last originally proposed. BIT TO KEY ITEM (STBS. TO MIDPOINT) BTM STAB. MID STAB. RESISTIVITY 12.43 D&1 14.02 GAMMA 14.69 APWD 21.91	17						1				
20 21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) seembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the indency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to affect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liked shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.	18										
20 21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) seembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the indency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to affect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liked shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.	19										
21 22 23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) Seembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to enfect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool like shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.											
22 23 24 25 26 27 28 29 30 EDITOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) Seembly will be used to drill to TD 5 7/8" sleeve stab on the motor did not seem to affect the indency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liked shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. BIT TO KEY ITEM (STBS. TO MIDPOINT) BITM STAB. 0.76 MID STAB. 9.14 RESISTIVITY 12.43 D & 1 14.02 GAMMA 14.69 APWD 21.91											
23 24 25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) Sesembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool like shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. BIT TO KEY ITEM (STBS. TO MIDPOINT) BTM STAB. MID STAB. RESISTIVITY D & I GAMMA 14.69 APWD 21.91							 	 			
25 26 27 28 29 30 29 30 29 29 30 29 29 30 29 29 30 29 29 29 29 29 29 29 29 29 29 29 29 29							 	 			
25 26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) Seembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liked shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.							 	 			
26 27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) Seembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool like shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. BIT TO KEY ITEM (STBS. TO MIDPOINT) BTM STAB. 0.76 MID STAB. RESISTIVITY 12.43 D&I GAMMA 14.69 APWD 21.91		ļ						 			
27 28 29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liked shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.	25						ļ	!			
29 30 BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liked shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. BIT TO KEY ITEM (STBS. TO MIDPOINT) BTM STAB. MID STAB. RESISTIVITY D&I GAMMA 14.69 APWD 21.91	26						ļ				
BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liked shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. BIT TO KEY ITEM (STBS. TO MIDPOINT) BTM STAB. 0.76 MID STAB. D&I GAMMA 14.69 APWD 21.91	27										
BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool like shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. BIT TO KEY ITEM (STBS. TO MIDPOINT) BTM STAB. MID STAB. RESISTIVITY 12.43 D&I GAMMA 14.69 APWD 21.91	28						<u> </u>				
BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool like shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.	29										
BOTTOM HOLE ASSEMBLY (OBJECTIVES vs RESULTS) ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool like shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.	30										
ssembly will be used to drill to TD his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liled shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. BTM STAB. 0.76 MID STAB. RESISTIVITY 12.43 D & I GAMMA 14.69 APWD 21.91		вотто	M HOLE ASSI	EMBLY (OBJI	ECTIVES vs R	ESULTS)			BIT TO KEY IT	EM (STBS, TO	MIDPOINT)
his assembly acted much like the last. The 5 7/8" sleeve stab on the motor did not seem to affect the endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liled shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. MID STAB. RESISTIVITY 12.43 GAMMA 14.69 APWD 21.91	ssembly v										
endency of the BHA much. The BHA both built and dropped during the run. The build or drop tended to effect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liled shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed.				7/8" sleeve	stab on the r	notor did no	t seem to af	fect the			
reflect the hardness of the formation, building in the hard and dropping in the soft. Stick slip was again redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool liled shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. D & 1											
redominantly high through out the run, occationally very high. The resistivity sensors in the Impulse tool gamma the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. Application											
illed shortly after drilling began and the tool stopped communicating appox. 8m before TD. TD was alled 5m earlier that originally proposed. Apw D 21.91											
alled 5m earlier that originally proposed.		, ,	•		•	•		•			
TOP STAB. 25.82											21.91
		.a alac originally pro	p 300a.						TOP STAB.		25.82
											
											
											ļ
											<u> </u>
									ı		

Appendix F Casing and Cementing Reports

Appendix F
Casing and Cementing Reports

Full Free Water% Frее Water% Version Pan 914 rm casing as per the casing landing details. Torqued all joints to 4900 daN-m and LPWH extension joint to 6775 daN-m. Landed casing in 39X52m Returns (Full/Partial): Returns (Full/Partial) Liquid/Blended: Liquid/Blended: ₹ 8 ≱ 8 imballed mudmat with bullseye, beacon basket and 25 mm grout line and hose atlached to the darrin sub on the CART tool. Filled casing with sea water at Bump Plug? Additives Liquid/Blended: Compatibility Test Run? Casing/Liner Landing Details Compatibility Test Run? Strength Strength Estimated TOC: 0 Estimated TOC: iquid/Blended: 훈 Additives Additives Additives Comp. PSI Comp 3.4474 Number of Plugs Used: Number of Plugs Used: Cementing Unit vater line and closed snorkel valve. Filled the casing every 5th stand while running in. Ran casing to bottom with no problems 0.439 Hrs. @ Mix Water Gal./Sx Mix Water 0.00 Gal./Sx Hrs @ Halifax, Nova Scotia YP, Pa: YP, Pa: Actual Actual 1908 Circulation Time & Rate Prior To Cementing: Displaced With (Cemented Unit/Pump) Displaced With (Cemented Unit/Pump) Circulation Time & Rate Prior To Cementing: PV, Pa's: PV, Pa's: **CEMENTING DETAILS** 1908 Yard Location: Ë Es. Est. Sacks Circulated: Est. Sacks Circulated: Cu. Ft./Sx m³ / tonne 000 0.757 Wt, kg/m³: WI, kg/m³: 15°C Time @ Temp Hrs. @ ₽ Time @ Temp cubic m / min Hrs. @ Hrs. @ Hrs. @ Volume, m3: Volume, m3: m³/min 94.1 1.17 20Ut CaCl2 + Seawater No. Sacks tonnes 0.0 Ş 5.00 Early Returns? Early Returns? Halliburton DV Tool Located @: Class 'G' cement Type **Dual Spacer** Cement Displacement Rate G + 20L/t CaCl2 ement Displacement Rate ead Cement Additives: Type ead Cement Additives: ail Cement Additives: Fail Cement Additives: Cement Company: Second Stage Spacer Type: Spacer Type: First Stage Remarks: Cement ead. ead ā QΜ 1,100.0 m 997.30 95.72 19.40 12.80 25.39 18.94 RL-4H 19.19 0.0 0.00 80 900 900 95.72 8 9.0 WL, ml/30 min: 18.2 Threads RL-4F AL-4F RL-4F RL-4H Elec Stab: Total: mm @ Grade 1067 X-52 X-52 X-56 X-62 ×-62 #VALUE! 12ppg Pad Mud Weight, kg/m 1079.66 1079.66 556.57 822.95 556.57 Hole Size: Type: 914 914 S ₹ Size (O.D.), mm 1440.0 cubic meters WT kg/m²: 1,093 m 36" LPWH, 36" (2" WT) 725.5 lb/ft X-60 ext joint 36" (1.5" WT), 553 lb/lt X-56 Grade Crossover Joint ;io Chevron Canada Resources 36" (1" WT) Double Valve Float Shoe 36" (2" WT) 725.5 lb/ft X-60 Grade DP To Land Liner (If Applicable) TOL @: 1,093 m TVD ess Cutoff Piece(s) and Landing Joints: ¥ PV, mPa's: 28 Aud Properties Prior To Cementing: 36" (1" WT) 374 lb/lt X-52 Plus RT Elevation (above MSL): Hole Volume From Caliper Log: Solids: iner Hanger (If Applicable) Description otal Pipe Installed: Casing Set @: Last Casing Size:

Onty

<u>\$</u>

5/22/2002

RWFEC-R2250

hole washout of 35%. Casing landed at 92m below ML and LPWH landed 3.6m above ML. Top of LPWH at 997.4mRT. As a result of the wrong ABB CART

returns at +/- 27 m³ of sturry pumped (only saw green spacer, did not see mica). Cement returns at +/-58.5 m³ of sturry pumped. Both numbers indicate

seawater at 450 gpm. Shut down atter displacement to check the floats. Floats held. CIP @ 06:33. Estimated 34 m² of cement returns. Dual spacer and 10sxs of mica with the mud pumps. Mix and pumped 2200 sxs of Class "G" + 0.23gal/sx CaCl₂ + seawater at 6.5bbm. Displaced with 21 m³ of

4o fill on bottom.Circulated 24 m³ of 1441 kg/m³ mud prior to cement job. Circulated 32 m3 of Dual Spacer with green dye

되

Ϊŝ

ime:

8

98

Casing Reciprocation?

/FV, sec / liter: THP WL: Casing Rotated?

ength Of Strokes:

Time Casing Moved After Bumping Plug:

Newburn H-23

Mahone Block

40.9#/It landing string. Landed casing 13.4m in on cementing stand. Nodeco cementing head 21ft above RT. Drilling Representative:

Jones/Ruitenschild

Ran 76.8m of 5* inner string below CART tool and landed 16.5 m above float shoe. Ran

ype:

Centralizers/Wipers:

spacing:

darrin sub above CART tool for potential grout cement job. Landed casing with 997.4m of 6.5/8"

Chevron Canada Resources												Casing	/Liner L	Casing/Liner Landing Details	ails	Version
Qnty Description	Size (O.D.),	Weight, kg/m	Grade	Threads Ler	Length, Ref#					CEMEN	CEMENTING DETAILS	•				
				f	8	Cement	Cement Company:			Yar	Yard Location:					
				°	000	First Stage	əf			Oiro Prio	Circulation Time & Rate Prior To Cementing:	Rate F:	Hrs @	m³/ Ret min	m³/ Returns (Full/Partial): min	artial):
					000	Cement	Туре	No. tonnes	Pump Time Time @ Temp	Yield m³ / tonne	We Est.	Weight Actual	ī.	Comp. Strength MPa @	H _S	WL Free cc Water%
				L	0.0	Lead		0.0	_	0.000	0	0	0.000	0	0	
				L	00:0	Tail		00	Hrs. @	0.000	0	0	0000	0	0	
				l	0.00	Lead Ce	Lead Cement Additives:							Additives Liquid/Blended:		
				L	80	Tail Cerr	Tail Cement Additives:							Additives Liquid/Blended:		
					00.0	Spacer Type:	Гуре:		Volume, m³:	Wt, kg/m³:	PV, Pa*s:	YP, Pa:		Compatibility Test Run?	Run?	g
					8	Cement	Cement Displacement Rate:	8	m³ / min	Displaced With (Cemented Unit/Pump)	emented Unity		Cementing Linit	Estimated TOC:		
Liner Hanger (II Applicable):					8 00	Cement Returns	Ear	Early Returns?		Est. Sacks Circulated:	rculated:	Num	Number of Plugs Used:	sed:	Bump Plug?	
Total Pipe Installed:				<u> </u>	80	Second Stage	DV Tool Loca	.: @	Q	Oirc Prio	Circulation Time & Rate Prior To Cementino:	Rate :	H.S.	m³/ Rel	Returns (Ful/Partial):	artial):
Less Cutoff Piece(s) and Landing Joints:				°	000	Cement	Туре	No. Sacks	Pump Tim	Yield Cu. Ft/Sx	Est	Weight		Comp. Strength PSI @	E E	WL Free
DP To Land Liner (If Applicable) TOL @:					9	Lead			-				1		L	
Plus RT Elevation (above MSL):					8 8	Tail			Hrs. @							-
					_	Lead Ce	Lead Cement Additives:							Additives	Liquid/Blended: /	nded:
Casing Set @: 0 m TVD	CW E		-	jes	-	Tail Cen	Tail Cement Additives:							Additives	Liquid/Blended: /	nded:
26:	2	Hole Size:		D ww	QW	Spacer Type:	Туре:		Volume, m³:	Wt, kg/m³:	PV, Pa's:	YP, Pa:		Compatibility Test Run?	Run?	
Hole Volume From Caliper Log:	Cubic meters					Cement	Cement Displacement Rate:		cubic m / min	Displaced With (Cemented UniVPump)	emented Unit/F	nmp):		Estimated TOC:		
Mud Properties Prior To Cementing:	WT kg/m³: Type:					Cement Returns	Ear	Early Returns?		Est. Sacks Circulated:	rculated:	Num	Number of Plugs Used:	sed:	Bump Plug?	
FV, sec / liter: PV, mPa's:	YP, Pa: 0	Gels:	\	WL, mV30 min:	Ë	Remarks:	s: Check floats - holding. Slack off full casing wt, no subsidence & bullseye 0.25 deg. Release CART & lay down cement std, flush 1.5 x drillpipe volumes & POOH	c off full cas	ing wt, no subsiden	ce & bullseye 0.5	5 deg. Release	CART & lay do	wn cement sto	J, flush 1.5 x drillpip	e volumes	POOH
HTHP WL: Solids:	48.	Sands:		pH:		Top of H	Top of HPWH = 996.54mRT. "Note minimum pass through ID of 16" landing ring in liner hanger jt is 17.156"	minimum p	ass through ID of 16	fanding ring in	iner hanger jt is	17.156"				
AKL: CL:	CA: X	XLime:		Elec Stab:		Mix and	Mix and Pump lead cement bottom dart land and shear in bottom plug after 14.3 m³ pumped w/ 9.51 MPa and pump Tail cement. Drop top dart. Use Halliburton to land dart	art fand and	shear in bottom plu	ıg after 14.3 m³ ı	umped w/ 9.51	MPa and pump	Tail cement. [Drop top dart. Use I	falliburton to	land da
Casing Reciprocation?:	Length Of Strokes:		Time:		F. S. T.	after 14.	after 14.0 m ³ . Shear top plug w/ 27.6 MPa psi and pump additional 1.9 m³ bbls w/ Halliburton. Switch to rig pump to finish displacement. Pump displacement to FIt Collar.	MPapsia	nd pump additional	1.9 m³ bbls w/ H	alliburton. Switc	th to rig pump to	finish displace	ement. Pump displ	acement to	Fit Collar
Casing Rotated?	Time Casing Moved After Bumping Plug:	After Bumpi	ing Plug:		ž Š											
Number Of /	Туре:															
Spacing:																
													1		1	
Drilling Representative:	Jones/Curran	Field:		Mahone Block	ğ		Lease:	Newburn H-23	H-23	Well Number:			AFE NO.	RWFEC-R2250	Date:	5/30/2002

Chevron Canada Resources			f									Casing	/Liner L	Casing/Liner Landing Details	tails	Version	l uois
Onty Description		kg/m	Grade T	Threads	m Ref#	_				CEMENTI	CEMENTING DETAILS						
1 (foat shoe joint	346	131.26 P	P-110	2̄	11.33	Cement	Cement Company: Halliburton	_		Yard	Yard Location:	Halifax, Nova Scotia	cotia				
o lis casino w/ threadlocked collars	346	131.26 P-110	\vdash	<u></u>	26.30	First Stage	ge Class 'G' cement			Circul Prior	Circulation Time & Rate Prior To Cementing:	late 2	Hrs @	m³/ Re 2 min	m³/ Returns (Full/Partial): min	Partial): Pa	Partial
†	346	131.26 P-110	┼──		13.74	Cement	Туре	No. tonnes	Pump Time Time @ Temp	Yield m³ / tonne	Weight Est.	int Actual	Mix Water Gal./Sx	Comp. Strength MPa @	Hrs	WL CC Wa	Free Water%
	346	131.26 P-110	-		2447.69	Lead	LaFarge Class G		Hrs. @ 5:05 62 °C	1.256	1560	1548	0.905	3.1026	20	96	Ë
1	346	131.26 P-110	 		4.56	Tail	LaFarge Class G		Hrs. @ 4:39 62 °C	0.764	1896	1908	0.423	14.479	8	- 86	ř
			├		00:0	Lead Ce	isi	OC prehy	3.3% BWOC prehydrated gel, 12.0 L/tonne Halad 344L + 10.0 L/tonne SCR100L	ine Halad 344	. + 10.0 L/ton	e SCR100L		Additives Liquid/Blended:	>	,	z
					0.00	Tail Cen	Tail Cement Additives: 14.0 L/ton	ine Halad	14.0 L/tonne Halad 344L, 7.0 L/tonne SCR100L	CR100L				Additives Liquid/Blended:	>	,	z
					0.00	Spacer Type:	Гуре: Dual Purpose		Volume, m³: 21.0	Wt, kg/m³: 1,32	PV, Pa*s:	YP, Pa:		Compatibility Test Run?	r Run?		ę Ż
					000	Cement	Cement Displacement Rate:	1.60	Displ	Displaced With (Cemented Unit/Pump)	nented Unit/P		fud Pumps	Estimated TOC:			2200
Liner Hanger (II Applicable):		-			0.0	Cement Returns	☐ Yes ☑ No Early Returns?	1	%	Est. Sacks Circulated:	ulated:		Number of Plugs Used:	.,	Bump□ Yes Plug?	Yes ☑No	٩
Total Pipe Installed:				~	2503.62	Second Stage	DV Tool Loca		QW	Circul	Circulation Time & Rate Prior To Cementing:	late	Hrs. @	m³/ Re min	Returns (Full/Partial):	Partial):	
Less Cutoff Piece(s) and Landing Joints:					0.00	Cement	Турв	No. Sacks	Pump Time Time @ Temp	Yield Cu. Ft/Sx	Weight Est.	jht Actuai	Mix Water Gal./Sx	Comp. Strength PSI @	Hrs	WL F	Free Water%
DP To Land Liner (If Applicable) TOL @:					8	Lead			Hrs. @								
Plus RT Elevation (above MSL):				"	998.09	Tail			Hrs. Ø								
						Lead C	Lead Cement Additives:							Additives	Liquid/Blended: /	ended:	
Casino Sal @ 3502 m TVD	3502 m MD		ř	Total	3501.71	Tail Cer	Tail Cement Additives:							Additives	Liquid/Blended: /	ended:	
	2	Hole Size:	432		3.515.0 m	Spacer Type:	Туре:		Volume, m²:	Wt, kg/m³:	PV, Pa's:	YP, Pa:		Compatibility Test Run?	1 Run?		
247.4	oic me						Cement Displacement Rate:		Displ cubic m / min	Displaced With (Cemented Unit/Pump):	nented UnivP			Estimated TOC:			
		Synthetic	Oil Base	Mud		Cement Returns	Early Returns?	/ ims?		Est. Sacks Circulated:	ulated:	Numb	Number of Plugs Used:	sed:	Bump Plug?		
a's: 26		s: WL, ml/30 min:	22 /	/L, ml/30 rr	in:	Remarks:	s: Land Casing and break circulation with rig pumps. Increase pump rate up to 100 strokes/minute. Held pre-job safety meeting with CT, TSF and Halliburton.	ation with	ig pumps. Increase p	ump rate up to	00 strokes/mir	ute. Held pre-	ob safety mee	aling with CT, TSF	and Hallibu	rton.	
HTHP WL: Solids: % Oil: 7.2 9.44	65	Sands:	0	pH:		Began	Began losing partial returns after 11,640 strokes (approximately on bottoms up to SSWH). Shut down. Release bottom dart & pump Dual Purpose Spacer.	O strokes	(approximately on bot	oms up to SSV	H). Shut dow	. Release botto	om dart & pum	np Dual Purpose S	pacer.		
CL: 41000	XLime:	те: 2.99		Elec Stab: 905	ιρ	Mix and	Mix and Pump lead cement bottom dart land and shear in bottom plug after 14.3 m² pumped w/ 9.51 MPa and pump Tail cement. Drop top dart. Use Halliburton to land dart	t land and	shear in bottom plug	after 14.3 m³ pu	mped w/ 9.51	MPa and pump	Tall cement. D	Prop top dart. Use	Halliburton	to land dar	Į
_	Length Of Strokes:	_	Time:		Hrs	after 14.0 m³.	.0 m³. Shear top plug w/ 27.6 MPa psi and pump additional 1.9 m³ bbls w/ Halliburton. Switch to rig pump to finish displacement. Pump displacement to FIt Coliar.	MPapsiar	d pump additional 1.9	m³ bbls w/ Hal	iburton. Switc	to rig pump to	finish displace	ement. Pump disp	acement to	FII Collar	
	Time Casing Moved After Bumping Plug	Bumping	Plug:		Hrs	Plug dic	Plug did not bump. Displace additional volume equal to one hall of shoe track and shut down. Plug did not bump. Release pressure and check floats. Floats held.	i volume e	qual to one half of sh	e track and shu	t down. Plug	lid not bump. R	elease pressu	ıre and check float	s. Floats he	ld.	
Number Of Type: Centralizers/Wipers: 6 / 0	6 rigid body	ópoc				RVD cer	R/D cement lines and set casing packoff. Total mud lost = 174.9 cubic meters	off. Total m	nud lost = 174.9 cubic	meters							
Spacing: 1 rigid body centralizer on each of the first six joints run	st six joints run																\top
						\perp											
						╛	-			Well Number			AFF No:		Date		T
Drilling Representative: Robichaux / Currai	Robichaux / Curran / Bruton / Balasch			Exploration				EL 2359		Chev	Chevron et al Newburn H-23	um H-23		RWFEC-R2250		6/16/2002	22

Chevron Canada Resources												Casing	/Liner La	Casing/Liner Landing Details	stails	Ver	Version 1
Onty Description	Size (O.D.), mm	Weight, kg/m	Grade	Threads L	Length, m Ref#	"				CEMENTING DETAILS	DETAILS						
1 float shoe it	251	93.46	P-110	VAMTOP	14.72	Cemen	Cement Company:			Yard I	Yard Location:	Halifax, Nova Scotia	cotia				
o its casino w/ threadlocked collars	251	93.46			27.72	First Stage	age Class 'G' cement			Circut Prior 7	Circulation Time & Rate Prior To Cementing:	3.5	Hrs @	m³/ Re	Returns (Full/Partial):		Full
	251	93.46	T		14.80	Cement		No. Pum tonnes Time	Pump Time Time @ Temp	Yield m³ / tonne	Weight Est.	ht Actual	Mix Water C	Comp. Strength MPa Ø	Hrs	WL SC W	Free Water%
76 jis casing	251			1	1029.90	Lead	LaFarge Class G		Hrs. @ 3:33hrs 72 °C	0.757	0	1872	0.000	14.245	25:44	56	F
1 x-over casing pup joint	251	93.46	P-110	VAMTOP	6.79	Tail	LaFarge Class G	4.3 3hrs	Hrs. @ 72 °C	0.757	٥	1872	0.000	14.479	50	56	ř
171 jts casing	251	93.46			2308.00	Lead C	.;	-1 + 0.2% Sup	35% SSA-1 + 0.2% Super CBL + 0.07 gps SCR-100L + 0.18 gps Halad-344	A-100L + 0.18	pps Halad-34		2.2	Additives Liquid/Blended:	>	,	>
	251		110		5.04	Tail Ce	ali Cement Additives: 35% SSA	-1 + 0.07 gps 5	35% SSA-1 + 0.07 gps SCR-100L + 0.18 gps Halad-344	Halad-344			~ =	Additives Liquid/Blended:	>	,	z
D					000	Spacer Type:	Dual Pur	Volun	Volume, m³: 13.0	Wt, kg/m³: 1,62	PV, Pa's:	YP, Pa:		Compatibility Test Run?	st Run?		z
					2	Cemen		, em 00 c		Displaced With (Cemented UnivPump):	UniVPump):	_	Aud Pumps	Estimated TOC:			3800
Liner Hanger (If Applicable):		1			80	Cement	Cement	ń	es No	Est. Sacks Circulated:	ulated:	Numb	Number of Plugs Used:	."	☐ Reymp S No Plug?	ON.	
Total Pipe Installed:					3406.97	Second	DV Tool Loca		QW	Circul Prior	Circulation Time & Rate Prior To Cementing:	late	Hrs. @	m³/ Ri	Returns (Full/Partial):	Partial):	
Less Cutoff Piece(s) and Landing Joints:					80	Cement	Type	No. Pum Sacks Time	Pump Time Time @ Temp	Yield Cu. Ft/Sx	Weight Est.	ht	b	Comp. Strength PSI @	H _s	N K	Free Water%
DP To Land Liner (If Applicable) TOL @:					8 8	Lead		+	Hrs. @								
Plus RT Elevation (above MSL):					997.26	Tail			Hrs. @								
						Lead C	ead Cement Additives:							Additives	Liquid/Blended: /	ended:	
4.004 Cit	4 404 m		·	i i	4404 23	Tail Ce	ail Cement Additives:							Additives	Liquid/Blended:	ended:	
9	2	Hole Size:	31		⊣ ≝	MD Spacer Type:	Туре:	Volun	Volume, m³:	Wt, kg/m³:	PV, Pa's:	YP, Pa:		Compatibility Test Run?	st Run?		
247.4	cubic meters					10	cement Displacement Rate:	cubic	Displaced V	Displaced With (Cemented Unit/Pump):	Unit/Pump):			Estimated TOC:			
	WT kg/m³: Type: 1524.0	Synthetic Oil Base Mud	Oil Base	Mud		Cement Returns		Early Returns?		Est. Sacks Circulated:	ulated:	Numb	Number of Plugs Used:	sed:	Bump Plug?		
FV, sec / liter: PV, mPa*s: YP, Pa: 155	4	Gels: 15	/ 18	WL, mV30 min:	ے	Remarks:	rs: M/U torque - 3140 daN-m. Converted autofill floats with three joints in the hole due to concerns of gas migration internally in casing and associated	Sonverted auto	fill floats with three join	ts in the hole d	ne to concern	s of gas migrat	ion internally i	in casing and as	sociated		
Solids:	60	1	0	H.		well co	well control issues. F/U every joint, B/C every 30 jts. Land casing and break circulation slowly with rig pumps. Circulate at 0.95m3 / 6000 kPa while	VC every 30 jts	. Land casing and bre	ak circulation s	lowly with rig	numps. Circulal	te at 0.95m3 /	/ 6000 kPa while			
CL: 39000		XLime:		Elec Stab: 679	6	boostir	oosting riser with full returns. Held prejob safety meeting with all personnel. Pumped 12.7 m³ of 1621 kg/m³ dual spacer w/rig pump. Pressure lesied cmi	prejob safety m	neeting with all person	nel. Pumped 12	.7 m³ of 1621	kg/m³ dual spa	acer w/ rig pun	mp. Pressure tee	sted cmt		
Casing Reciprocation?: Length	Length Of Strokes:		Time:		Hrs	lines to	ines to 35 MPa - good, Dropped bim dart. Mix and pump 575sxs (18.4 m³) of lead cement. Bim plug sheared w/ 11 MPa, Followed with 100sxs	ı dart. Mix and	pump 575sxs (18.4 m) of lead ceme	nt. Btm plug sl	neared w/ 11 N	APa. Followed	with 100sxs			П
	Time Casing Moved After Bumping Plug:	er Bumping	Plug:		Hrs	(15.9 r	15.9 m³) of fail cement. Dropped top dart and displaced 15.9 m³ of 1525 kg/m³ EMOBM with cement pump shearing top plug with 12 MPa. Continue	dart and displ	aced 15.9 m³ of 1525	kg/m³ EMOBM	with cement p	ump shearing	top plug with	12 MPa. Continu	e e		
/ 9		6 rigid body	_			displac	displacement with rig pumps monitoring full returns. Displacement pressure 9500 kPa. Did not bump plug. Stopped displacement with additional half	ing full retums.	Displacement pressu	е 9500 кРа. D	d not bump	ug. Stopped di	isplacement w	vith additional ha	-		7
Spacing: 1 solid rigid-body aluminum centralizer on each of the first six joints run.	on each of the first	six joints ru	E			shoe t	shoe track pumped. Used MI swab calculation to determine casing running rate and stuck with programmed rate through entire run.	alculation to de	stermine casing runnin	g rate and stuc	k with progran	med rate thro	ugh entire run				T
Four stop collars used.						Extrap	Extrapolated BHST 120°C.										Т
Drilling Representative: Robichaux / Ruite	Robichaux / Ruitenschild / Alworth	Field:		Exploration			Lease:	EL 2359		Well Number:			AFE No:		Date:	6/30/2002	8

set the Baker hydraulic liner hanger w/ 15190 KPa. Pump ball through hanger and est circ 🤣 0.64 m/min & 9500 kPa. Pump 9.54 m² of 1824 kg/m² tuned spacer. M&P 229 sx cr 10.19 m³) at 0.8 m³/min & 13317 kPa. Drop dart. Disp w/ SBM at 0.8m³/min & 14214 kPa w/ partial returns. After 12.7 m³ displaced reduce pump rate to 0.64m³/min w/10868 kP w/ slight losses. Shear dart through HyFlo valve w/ 27600 kPa. Latch dart into wiper plug & shear w/ 29325 kPa. Cont displacement, reduce pump rate to 0.32 m/min w/5382 kF Free Water% Full Free Water% pill & att to breakdown any litter cake. While circ, max gas 67% • max mud cut 1704 kg/m³. Cont. to work pipe S/O 17600daN-33000daN w/ no progress. P/U 1m & drop ball, wall 1404m-Static. Tag at 5350m w/ 8800 daN. P/U 30800 daN over to pull free. Close HyFlo valve & convert (It equip w/ 9867kPa. Break circ at 0.32 m//min & 8004 kPa w/ full return Wash If 5350-5404m w/ 2200-4400 daN. Set down @ 5404m. Att to wash w/ 8800-13200daN, incr pump I/ 0.56m/min & 8660kPa. No progress. Pump 3.18m², 1824 kg/m² tunec Version 1 Trace RIH 127mm DP to 5350m as per the MI liner running schedule with no losses. Ballooned 6.36m² of Ituid over the theoretical displacement. Flow check at 3666m and <u>≗</u> Returns (Full/Partial): Returns (Full/Partial): Bump Syes [Liquid/Blended: Liquid/Blended 38 and plug in landing collar at 61.4 m² (0.95m² early). Pressure up to 13800kPa. Total of 15.6m² lost during the cement lob. Set ZXP Liner top packer w/ 352000 daN. Bump Plug? 되 Pressure test packer to 27600kPa surface pressure. Pull 10 stds above the hanger and circ bitms up. Estimate 0.32-0.48 m³ cement max on top of flanger. Compatibility Test Run? Compatibility Test Run? 48:00 Estimated TOC, m MD: Strength @ RWFEC-R2250 Liquid/Blended: Additives Estimated TOC: iquid/Blended m³, Additives Additives 24.794 Number of Plugs Used: **Number of Plugs Used:** Hrs. @ Mix Water Gal./Sx Hrs @ Mix Water Gal./Sx Cement Unit 0.544 0.000 Halifax, Nova Scotia Cement Unit YP, Pa: YP, Pa: Actual Chevron et al Newburn H-23 1872 17.7 L/tonne Halad344 EXP + 13 L/tonne Halad 413L + 8 L/tonne SCR-100L Circulation Time & Rate Prior To Cementing: Circulation Time & Rate Prior To Cementing: Displaced With (Cement Unit/Pump) isplaced With (Cement Unit/Pump): PV, Pa's: CEMENTING DETAILS PV, Pa's: 1872 Est Est Est. Sacks Circulated: Est. Sacks Circulated: Cu. Ft./Sx m³ / tonne Wt. kg/m³: Wt, kg/m³. 1.036 0.000 ž D 10.0 Pump Time Time @ Temp Pump Time Time @ Temp Hrs. @ Hrs. @ cubic m / min Hrs. @ Hrs. @ Volume, m3: Volume, m3: m³/min ص چ No. tonnes No. Sacks 8.6 Early Returns? 8 DV Tool Located @: Halliburton Class 'G' cement Type aFarge CI G + 35%SSA-1 ement Displacement Rate: ement Displacement Rate □ Yes □ № Tuned ead Cement Additives: Lype ead Cement Additives: ail Cement Additives: ail Cement Additives: ement Company: econd Stage Spacer Type: Spacer Type: First Stage emarks: Cement Cement ead ead MD 5,425.0 m 1084.89 4224.12 4224.12 1178.88 Hrs 11.69 13.02 24.68 5403 26.17 0.00 16.87 8 0.0 0.62 0.94 Ĭ WL, mV30 min: 325 Elec Stab: Threads SLSF SLSF SLSF mm @ SLSF SLSF HCQ128 SLSF Synthetic Oil Base Mud HCQ128 HCQ125 HCQ128 HC0128 Grade 3.64 Time: 216 Time Casing Moved After Bumping Plug: Field: Weight, kg/m 68.60 68.60 68.60 68.60 68.60 Hole Size: 6 bow spring cent subs Robichaux / Curran / Bruton / Balasch / Liutkus Sands: 1 bow spring centralizer sub on each of the first six joints run Size (O.D.), mm ₽ 197 197 197 197 197 ₽ 197 197 cubic m. WT kg/m². 1788.0 ength Of Strokes: 5,403 m 4,404 m Ö Туре: Chevron Canada Resources casing w/ cent sub & land collar OP To Land Liner (If Applicable) TOL @: ess Cutoff Piece(s) and Landing Joints: 32000 5,323 m TVD its Casing w/ Centralizer sub its casing w/ centralizer sub casing w/ centralizer sub And Properties Prior To Cementing: 251 mm PV, mPa's: Plus RT Elevation (above MSL): Hole Volume From Caliper Log: iner Hanger (If Applicable): Drilling Representative: Sasing Reciprocation? Float Collar Sentralizers/Wipers: Float Shoe otal Pipe Installed: its casing Casing Set @: Last Casing Size: Sasing Rotated? FV, sec / liter: 95 **Jumper Of** THP WL: Spacing: Quit 9/

Appendix G Drilling Fluid Summary

Appendix G Drilling Fluid Summary

CHEVRON TEXACO Cuttings Disposal Summary

INTERVAL	Cuttings Disposed	Disposal Rate	TOTAL
17"	109 tonne		\$29,535
12 1/4"	115 tonne	\$270 / tonne	\$30,993
8 1/2"	177 tonne	\$2707 toline	\$47,874
6 1/2"	250 tonne		\$67,527
TOTALS	652 tonne	\$270/ tonne	\$175,929

BASE FLUID ACCOUNTING

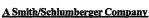
BASE FLUID DISPOSAL	17"	12.25"	8.5"	6.5 P&A incl.	TOTAL
Discharged overboard (barrels)	171.2	31	25.6	7.8	235.6
Sent to town for disposal (barrels)	154.5	120.1	229.7	270.2	774.5
Total base fluid removed (barrels)	325.7	151.1	255.3	278	1010.1

A Smith/Schlumberger Company

Newburn H-23 Waste Management Recap

According to a ruling of the Canada-Nova Scotia Offshore Petroleum Board, the Newburn Prospect was governed by a synthetic base fluid discharge limitation of 6.9% base fluid to wet cuttings weight ratio, as has been the case with other wells in this jurisdiction over the past couple of years.

For primary cuttings processing on the Newburn prospect, the drillship Deepwater Millennium was fitted with a Hutchison Hayes "Duster" cuttings dryer with accompanying Hutchison Hayes 5500 high speed centrifuge. This system has proven to be effective in Gulf of Mexico operations, and similar performance was anticipated in these waters.


Shaker discard was transported to the Duster via auger, with a vacuum fed RotoHopper as back up. The ship was fitted with two one hundred horsepower Swaco vacuum units for additional cuttings transport and various containment purposes, along with a set of cuttings skips for containment and transport of waste.

The well was drilled with synthetic base fluid from the seventeen-inch interval onward. Drill cuttings dried below the 6.9% limit by the Duster were disposed of overboard. Waste from the 5500 centrifuge, from interfaces, drilled cement, and other sources not suitable for processing with the Duster were contained in skips and shipped to land for treatment and disposal at the Envirosoil facility.

Rather severe, unanticipated process rate problems arose with the Duster in the high volume, seventeen-inch section, as outlined previously. Apart from the rate problem, the system processed some 2200 barrels of drill cuttings (neat hole volume) carrying 1600 barrels of drill fluid. This represents almost 5000 barrels of waste, when the cuttings bulking factor (40%) and washout are considered.

Setting aside slops, cement, interfaces, etc. (which are contained in any case), and looking strictly at waste generated from drilling the formation, an appreciation of the economics of using the drying system may be arrived at. The produced waste attributable to formation drilling was reduced from 5000 barrels (appx.) to 600 barrels (400 bbl. of discard from the 5500 centrifuge plus 200 bbl. (appx.) of straight shaker cuttings contained via vacuum drop during interruptions of processing). This represents an onshore waste disposal reduction of 88%.

Apart from the obvious savings of onshore disposal tonnage, the cost of transport to shore, the cost of rental of additional cuttings containers to handle the large volumes, and the cost of the more than 1000 barrels of drilling fluid recovered by the dryer was saved by employing the drying system. Also, the effect on rig

Integrated Fluids Engineering

operations of about 200 extra skip loads of waste, roughly tripling the total volume of waste that was handled, is a very considerable incentive to reduce waste volume offshore.

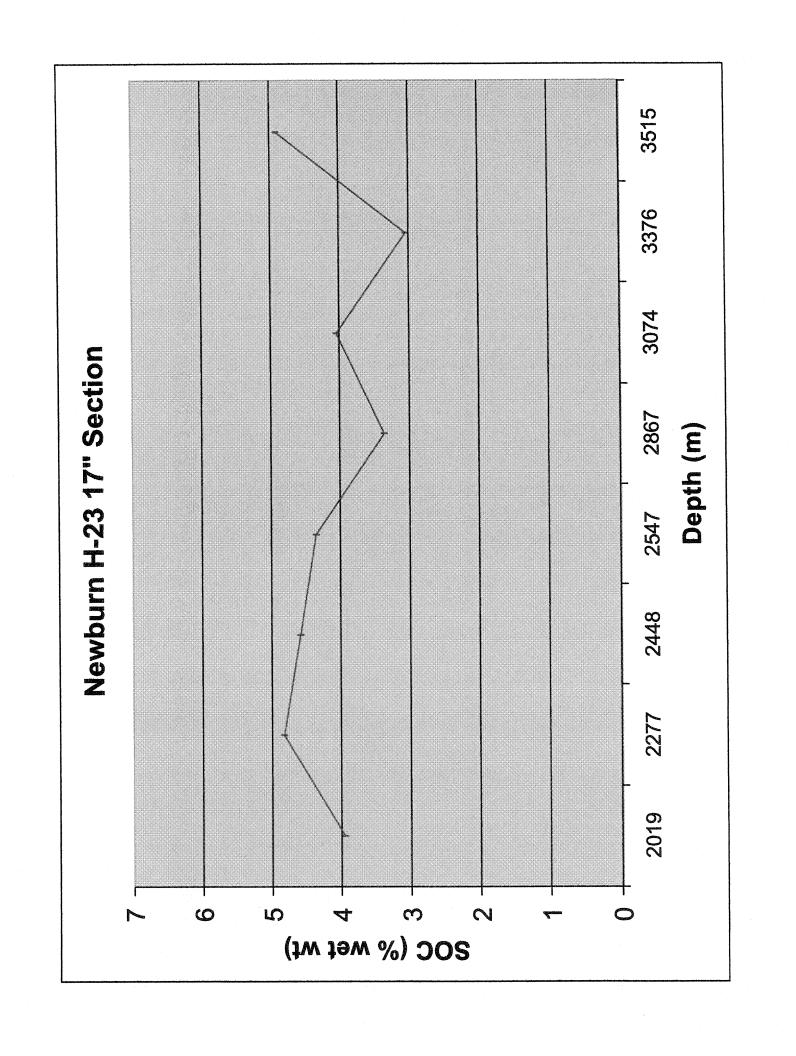
Following are some highlights of the waste management parameters of the project.

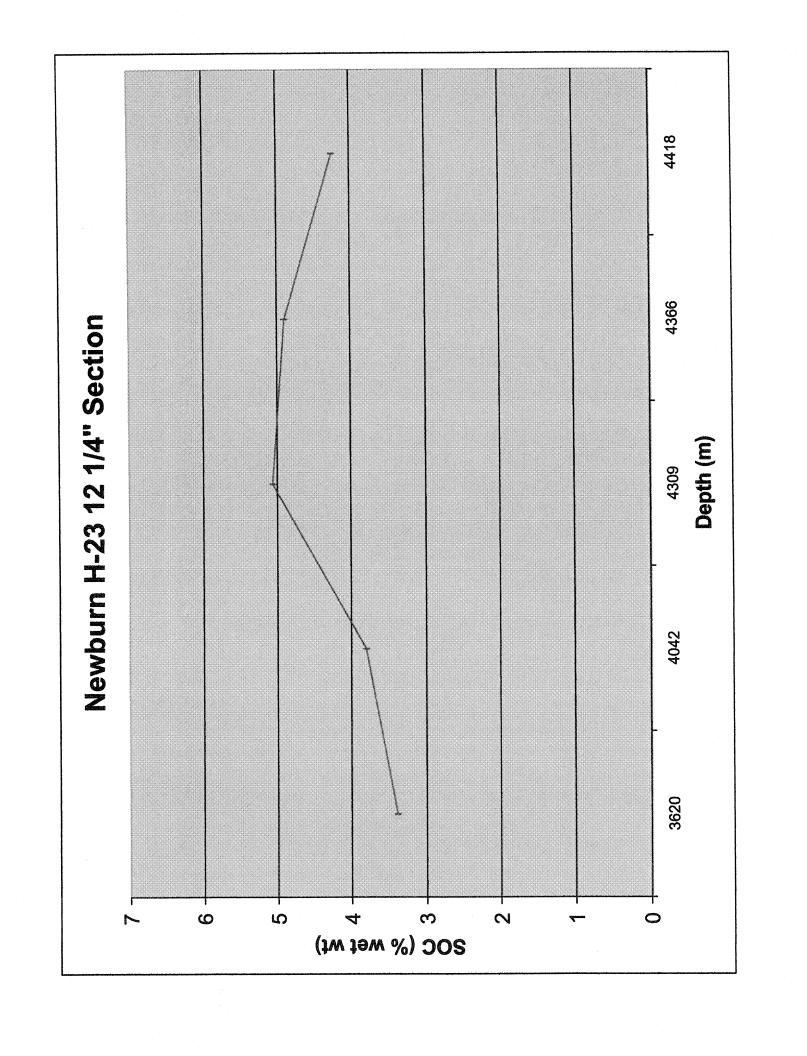
		00.000.000.000.000.000.000.000.000.000	(0.04-400m)	ChevronT	exaco et al	Newburn	H-23			
Interval	SOC	Volume	Mud	Mud	Synthetic	Mud to	Synthetic	Tot Vol	Weight	
		Drilled	Load	Overboard	Overboard	Boxes	to Boxes	Boxes	Boxes	
17 inch	4.13	1473	1119	260	171	235	155	461	109	
12.25 inch	4.28	432	276	49	31	195	120	381	115	
8.5 inch	4.71	231	143	43	26	400	230	602	177	
6.5 inch	4.19	87	73	15	torestatus metaran auriganti i mustarini indiseri 8 inas sinaparen si turun auriganti indiserias seri	340	179	441	158	
P&A	0 0 0 0 0 175 92 282									
TOTAL	4.29	2223	1611	367	236	1345	776	2167	652	
Notes	Signature and the second			erage of 24 h	our reported	l values in	percent wet	weight.		
	Mud lo	ad is volu	com the chicas extended discourses establish	l on shaker o		K 01.06.00000.106.001.001.004.0000.004.002.000.00	coc=x2-06-2-2-xxxx000-000-00-00-00-00-00-00-00-00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Construction of the second second second second second second second second second second second second second	Grant construction of the construction of the con-	ili esta comencia esta esta esta esta esta esta esta est	n-10-10-27-10-10-10-10-10-10-10-10-10-10-10-10-10-	nud on cuttir e fluid in abo	organization desirable entrancement	cessing thr	ough cutting	gs dryer.	::\$40~2001 WWW.90014-14-14-10-14-10	
	La company de la	Lesgouro Aurorito (procourtos apocitos procedencimo	accore-acciesamantationale-accie	d lost to cutt	entervier of the common transport and the common common transport and the common common transport and the common common transport and the common comm	PF-6-29-00-20-F0-10P-00P-00P-00P-00P-00P-00P-00P-00P-00	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	e volume.		
	de constitución de la constituci	e in who will not be contracted and contracted and the contracted and		fluid in boxe		re disposal				
	denistra en secondo como con		06.00.2007/0000000000000000000000000000000	aste Transfer	r records.					
	sike separa suprocesse control control	ımes in ba	CONTRACTOR CONTRACTOR	<u></u>	records, in	***************************************	r discontration and activities on the contration and activities			

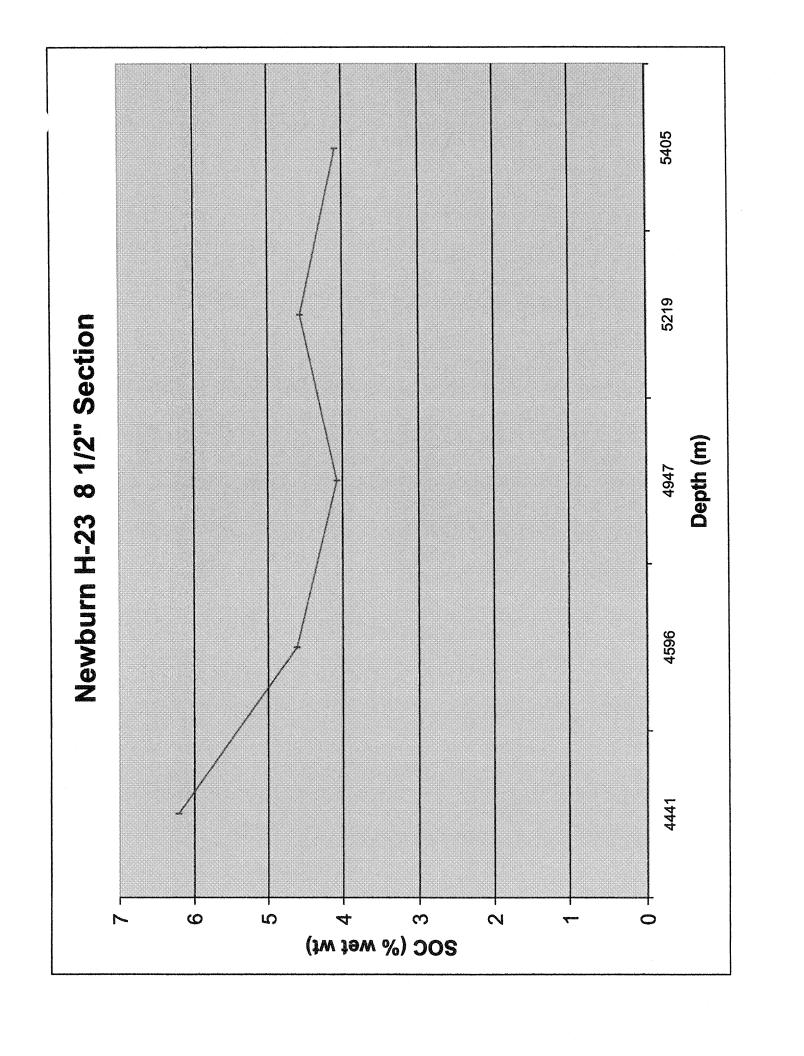
The mud recovery rate from cuttings processing was approximately 63%, computed as:

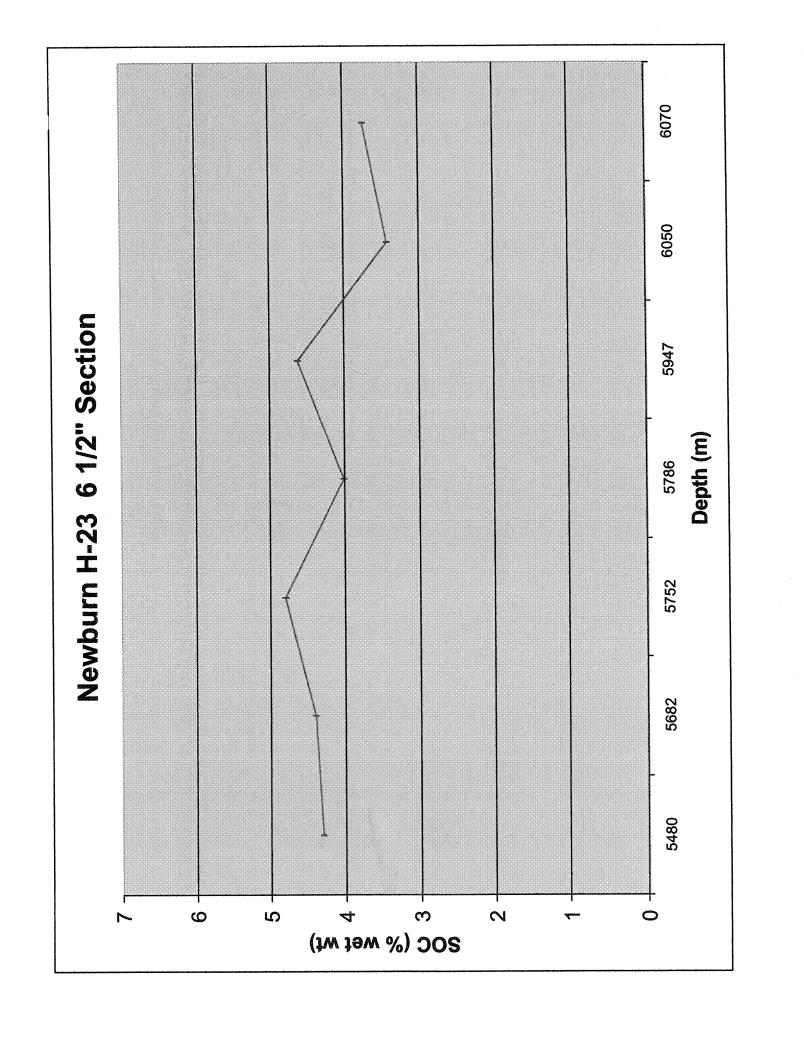
(Mud Load - (Mud Overboard+5500 Mud Discard to boxes)) / Mud Load.

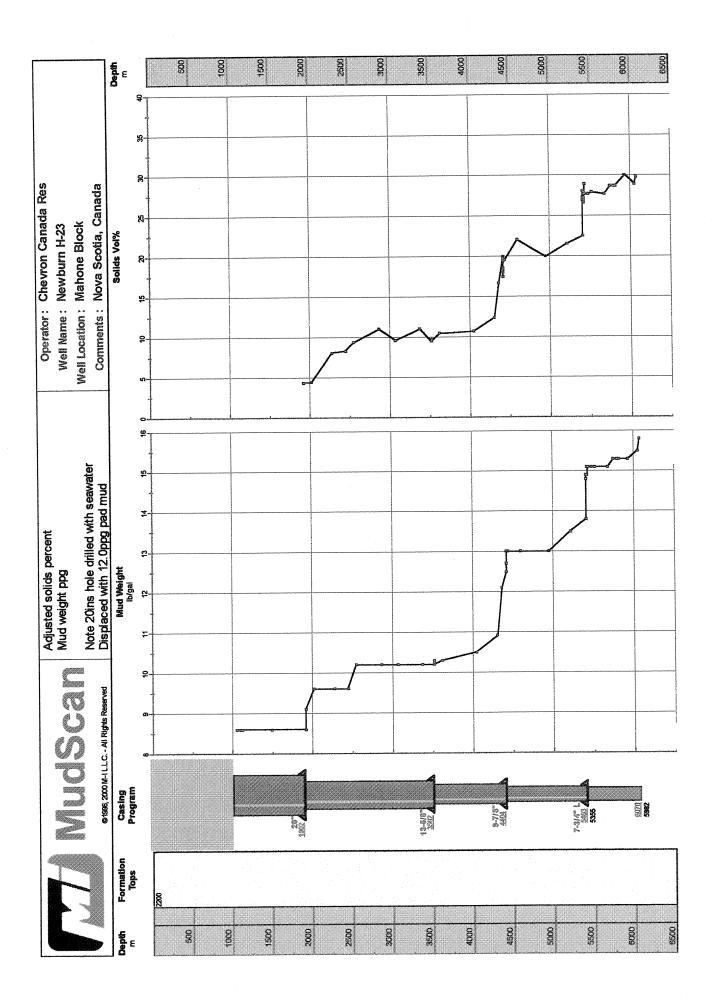
Of 1345 barrels of mud contained in cuttings boxes, approximately 200 barrels came from 5500 centrifuge discard, and 100 barrels were contained during Duster service interruptions. The remainder of the waste came from slops, pit cleaning, interface, and the like. Opportunities for future reductions of waste volume should be sought from these sources.

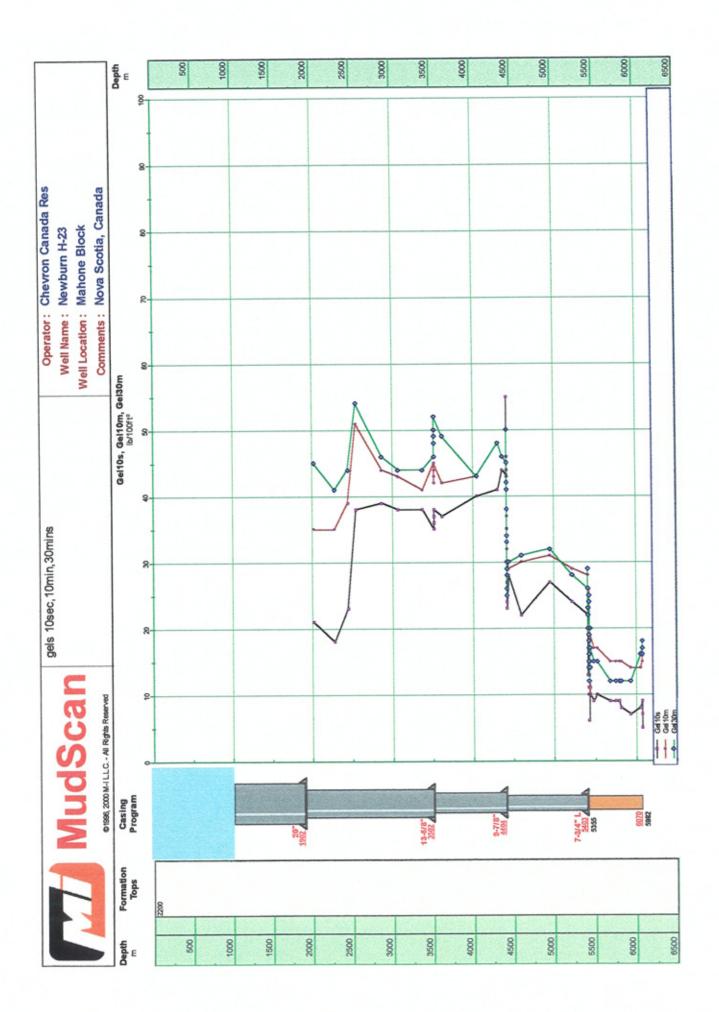

Integrated Fluids Engineering

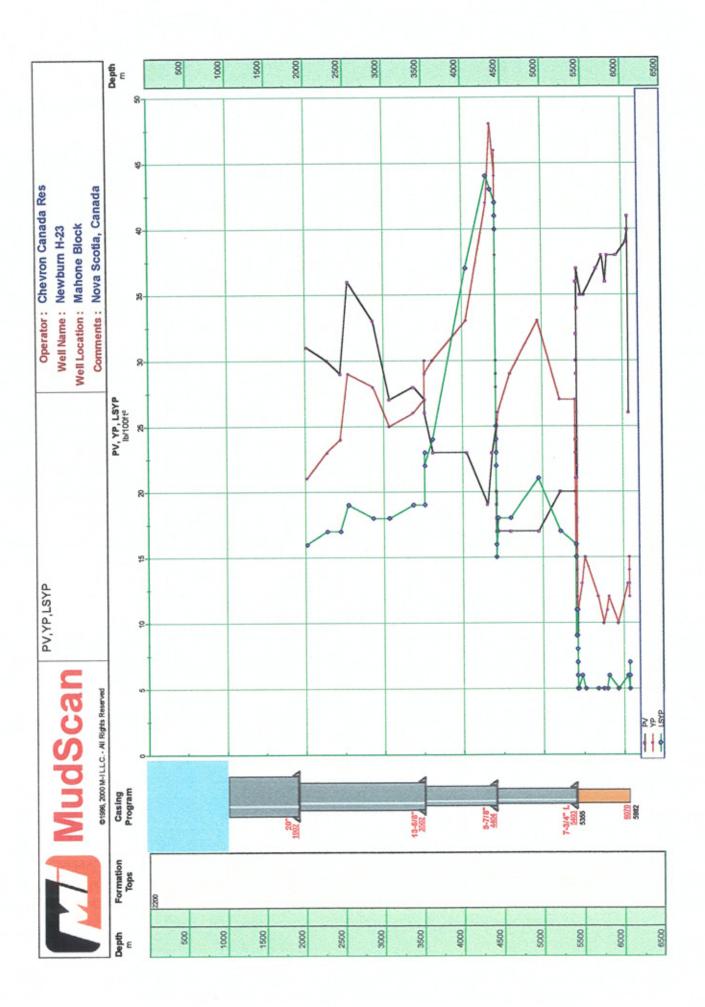

A Smith/Schlumberger Company

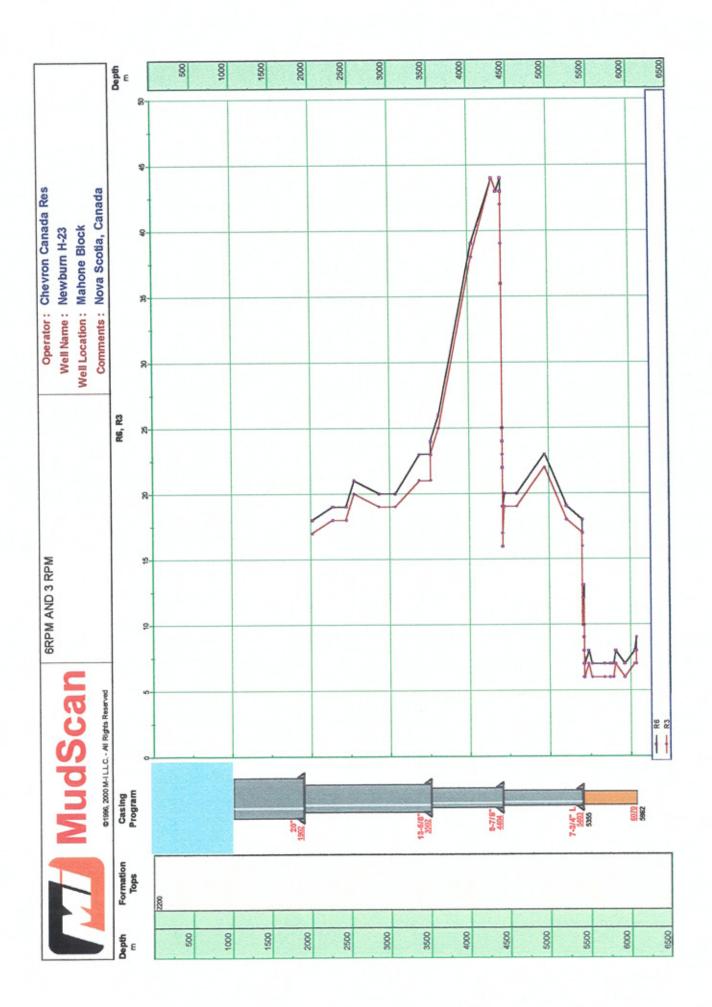

It was expected that the SOC readings would increase with depth, as penetration slowed and cuttings became finer. This trend did not appear, however. This would seem to be due to the effect of adding barite to the mud system as the well was drilled deeper. The addition of barite offsets the effect of progressively finer cuttings in two ways. First, the barite crowds the mud, decreasing the amount of base fluid per unit volume of mud, and, second, the barite increases the average density of total solids, which directly affects the wet weight ratio, since API procedure does not differentiate between drill solids and commercial solids for computing wet weight ratio.

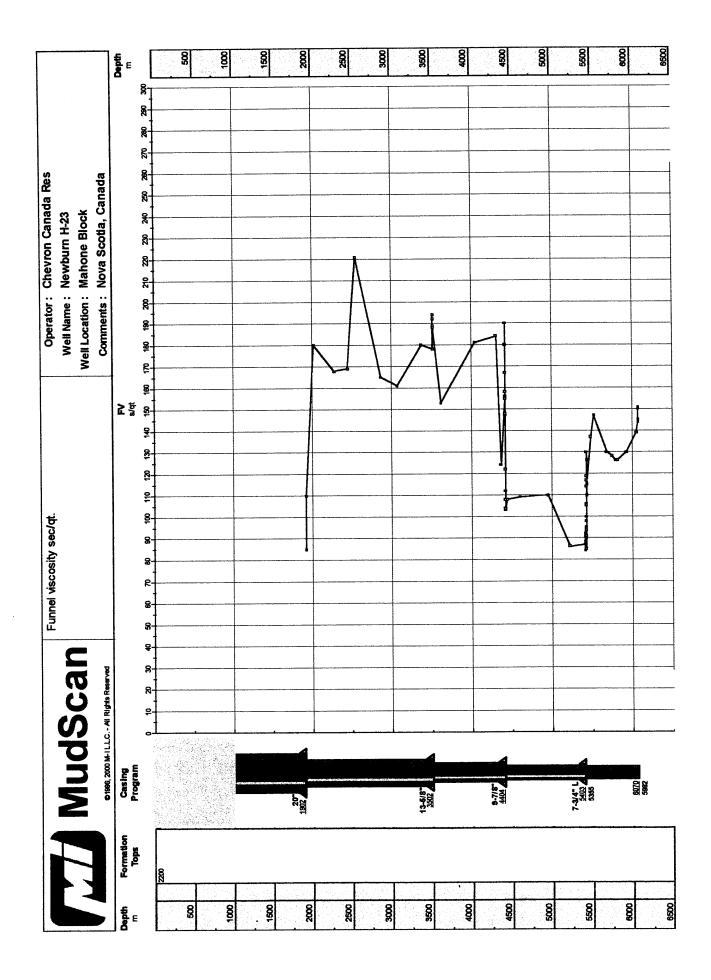

MATRIX PIT CLEANING

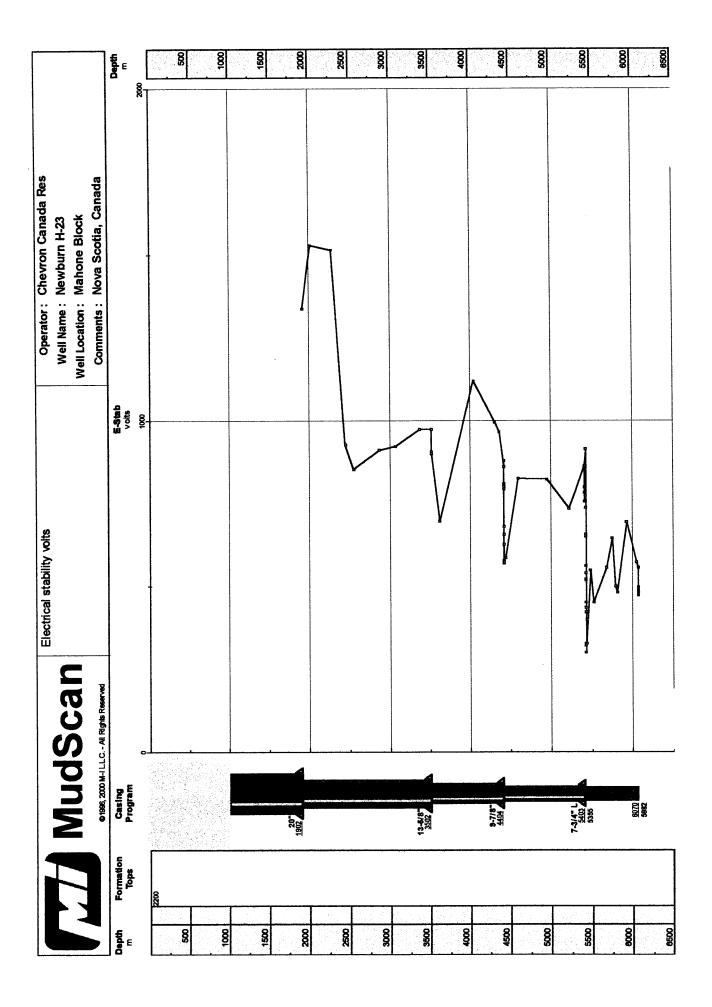

In the process of cleaning pits on the rig, 83.17 tonnes of wastes were generated and disposed at the Envirosoil facility.

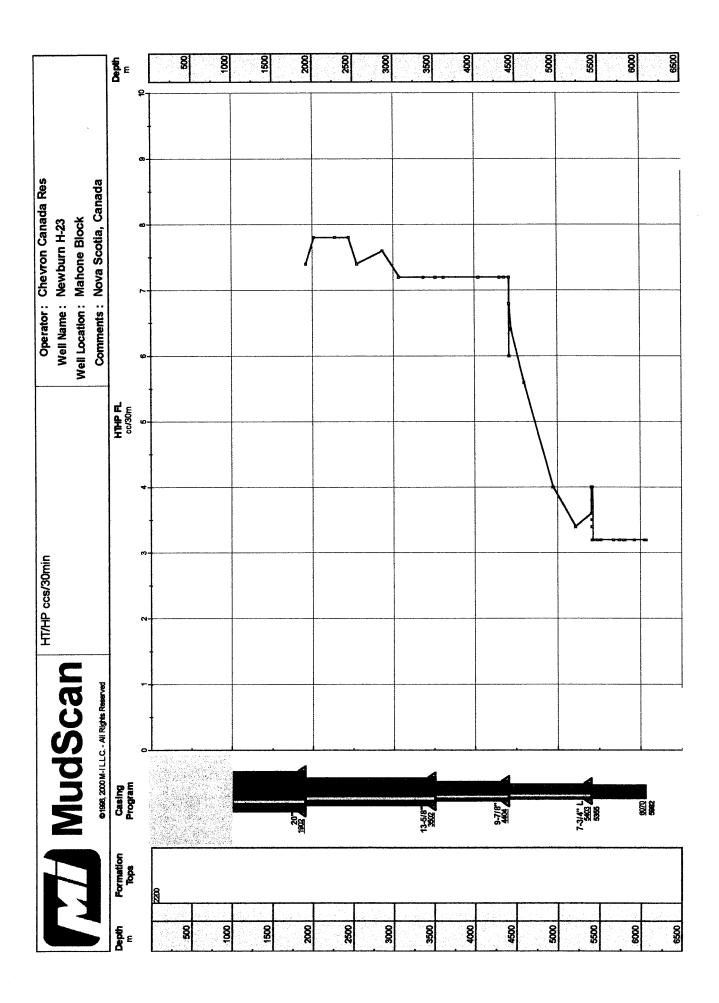


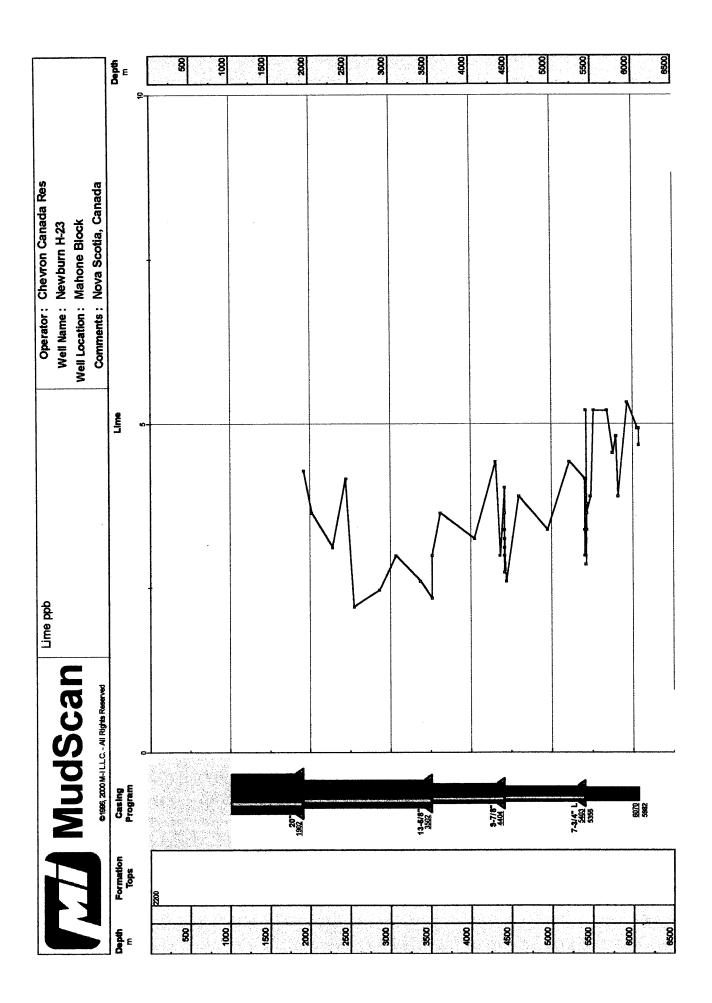


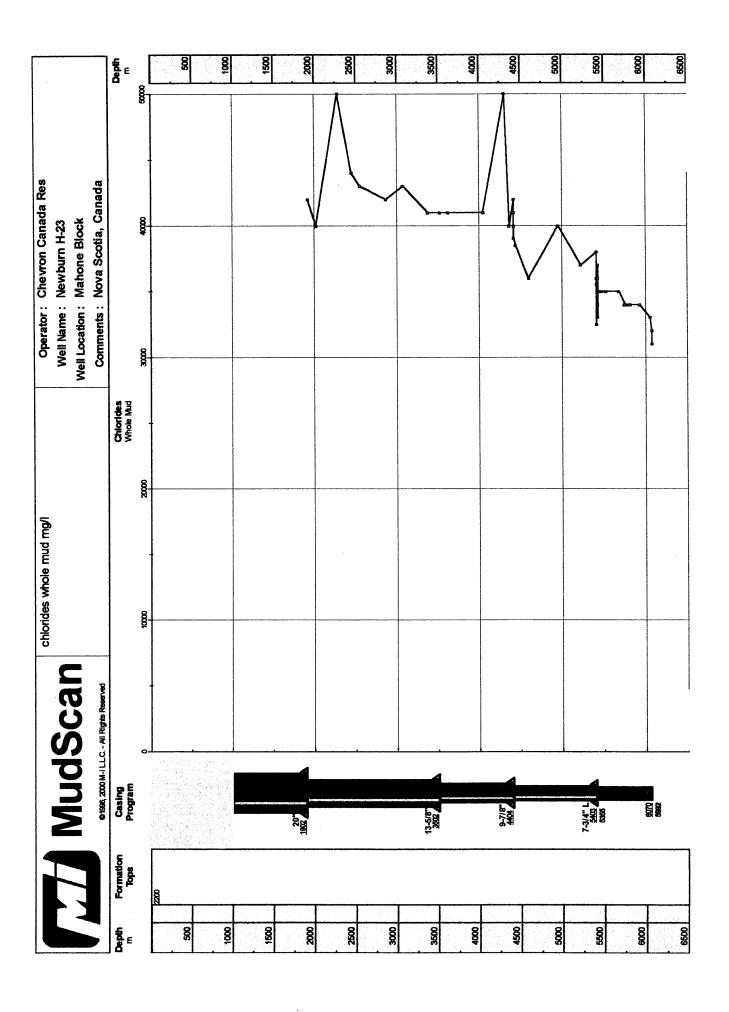


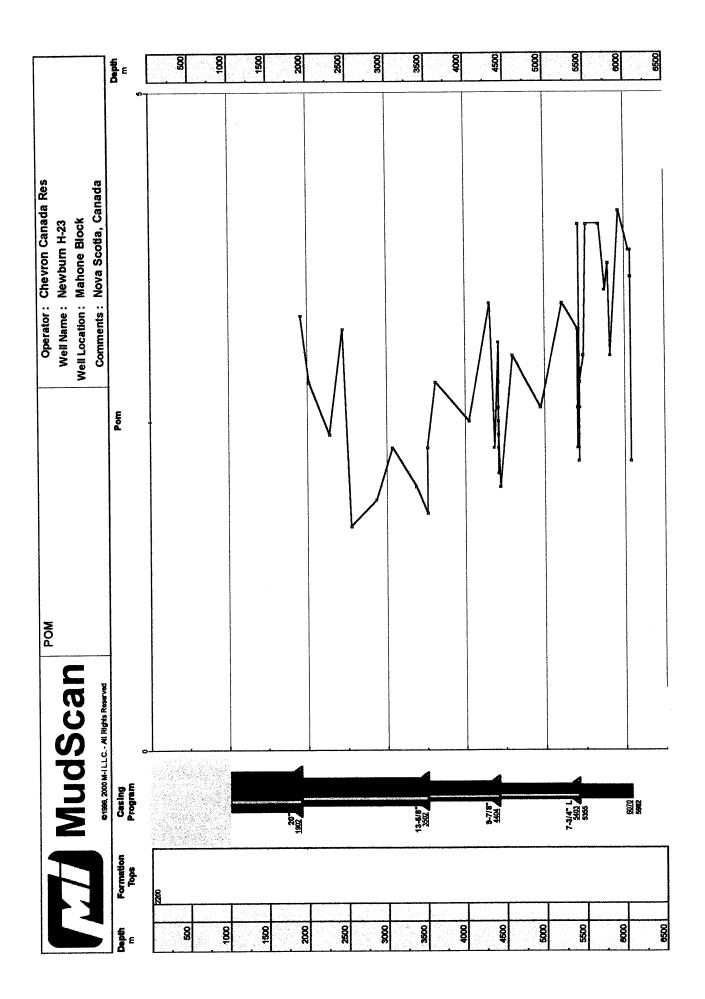












Appendix H Formation Integrity Test Results

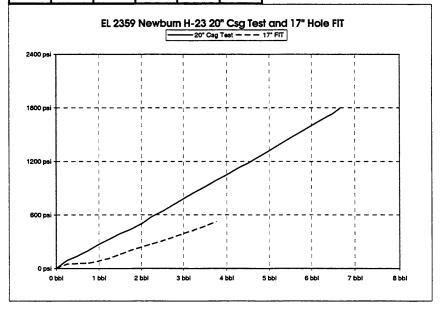
Appendix H
Formation Integrity Test results

20" CASING TEST AND 17" FIT

RIG: DW Millennium

DATE: 4-Jun-02

FIELD: EL 2359 WELL: Newburn H-23


CASING DATA:

SIZE INC.	WGT/FT.	GRADE	CONN.	TVDmRT	MDmRT
20	169	X-52	RL-4S	1,902	1,902

CSG. TEST DATA:

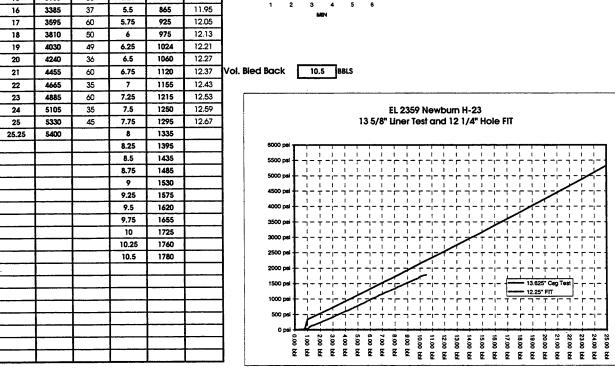
F.I.T. DATA:

BBLS	PSI	Delta "P"	BBLS	PSI	EMW				
0	0	0	0	0		LEAK OFF	PSI=	530 psi	
0.25	90	50	0.25	50	9.45	MW-USED		9.3 ppg	
0.5	140	5	0.5	55	9.47	EMW	=	10.9 ppg	
0.75	200	5	0.75	60	9.48	5	MIN BLEED O	FF	
1	270	25	1	85	9.56	MINUTES	PSI	EMW	
1.25	330	30	1.25	115	9.65	0	525	10.92	
1.5	390	45	1.5	160	9.79	1	510	10.87	
1.75	440	45	1.75	205	9.93	2	495	10.83	
2	500	35	2	240	10.04	3	490	10.81	
2.25	580	35	2.25	275	10.15	4	490	10.81	
2.5	640	35	2.5	310	10.26	5	490	10.81	
2.75	710	40	2.75	350	10.38				
3	780	40	3	390	10.50]	Five	min bleed o	off
3.25	850	40	3.25	430	10.63	600	Education	20. AND TO THE 20	DESCRIPTION
3.5	915	45	3.5	475	10.76	500		12.67 17.7822 181	
3.75	985	50	3.75	525	10.92	400 <u></u> 300			
4	1050					200	Company of the second		
4.25	1120					100			
4.5	1180					۰		*********	
4.75	1250						1 2	3 4 Min	5 6
5	1320]			
5.25	1390]			
5.5	1460]			
5.75	1530								_
6	1600					Vol. Bled	d Back	3.75	BBLS
6.25	1670								•
6.5	1735								
6.68	1800								

13-5/8" CASING TEST and 12 1/4" F.I.T.

RIG: DW Millennium

DATE: 18-Jun-02


FIELD: EL 2359

WELL: Newburn H-23

CASING DATA:

SIZE, INCH	WT/FT.	GRADE	CONN.	TVDmRT	MDmRT
13-5/8	88.2	P110	TC-II	3,502	3,502

		13-5/8	88.2	PIIO	IC-II	3,502	3,502	
CSG. TE	ST DATA:		Initial F	I.T. DATA:	•			-
BBLS	PSI	Delta "P"	BBLS	PSI	EMW			
0	0	0	0	0		LEAK OFF	PSI=	1780 psi
0.25	0	32	1	32	10.55	MW-USED-	=	10.5 ppg
0.5	0	95	1.25	127	10.71	EMW		13.5 ppg
0.75	0	28	1.5	155	10.76	5	MIN BLEED O	FF
1	344	43	1.75	198	10.83	MINUTES	PSI	EMW
2	535	40	2	238	10.90	0	1780	13.48
3	725	47	2.25	285	10.98	1	1765	13.45
4	925	40	2.5	325	11.04	2	1760	13.45
5	1120	43	2.75	368	11.12	3	1760	13.45
6	1325	42	3	410	11.19	4	1760	13.45
7	1525	52	3.25	462	11.27	5	1758	13.44
8	1725	46	3.5	508	11.35			
9	1935	42	3.75	550	11.42	1	Five	min bleed o
10	2150	45	4	595	11.50	18	300 E	CARLES AND L
11	2340	40	4.25	635	11.56] .	700 FASE	*** *********************************
12	2540	50	4.5	685	11.65	. ₹ ′	W 1	
13	2750	45	4.75	730	11.72		000	6.0
14	2960	45	5	775	11.80	1		
15	3160	53	5.25	828	11.89	11	1 2	3 4
16	3385	37	5.5	865	11.95	1	1 2	MIN
17	3595	60	5.75	925	12.05	1		******
18	3810	50	6	975	12.13]		
19	4030	49	6.25	1024	12.21]		
20	4240	36	6.5	1060	12.27	ı		

9 7/8" CASING TEST AND 8 1/2" FIT

RIG: DW Millennium

DATE: 4-Jul-02

FIELD: EL 2359 WELL: Newburn H-23

7.25

7.5

7.75

8.25 8.5 8.75

9.25

9.5

9.75

10

10.25

10.5

10.75

11

11.25

11.5

11.75

12

12.25

12.5

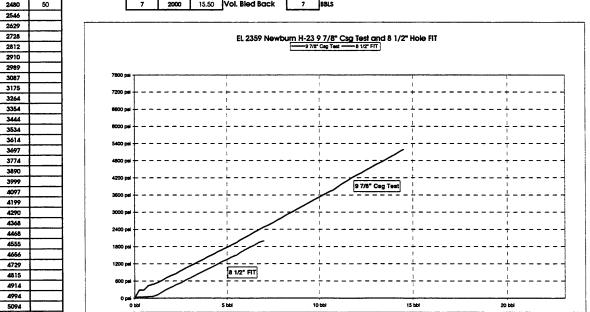
12.75 13 13.25

13.5

13.75

14

14.25


14.5

5183

CASING DATA:

CASING D	AIA:					
SIZE INC.		WGT/FT	GRADE	CONN.	TVDmR T	MDmRī
97/8		62.8	P110/C110	VAMTOP	4,404	4,404

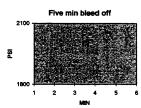
		, , , , ,			02.0		*********	-,	1	J	
CSG. TE	ST DATA:		CSG. TE	ST DATA:	F.I.T. DAT	A:				-	
BBLS	PSI	Delta "P"	BBLS	PSI	BBLS	PSI	EMW				
0	0	0	14.75	5277	0	28.9	12.88	LEAK OFF	SI=	2000 psi	
0.25	278.5	11.8	15	5383	0.25	40.7	12.89	MW-USED-	=	12.8 ppg	1
0.5	287	4.8	15.25	5483	0.5	45.5	12.90	EMW		15.5 ppg	1
0.75	434.6	5	15,5	5546	0.75	50.5	12.91	5	MIN BLEED O	FF	
1	481.1	6.3	15.75	5656	1	56.8	12.92	MINUTES	PSI	EMW	
1.25	539	52.8	16	5824	1.25	109.6	12.99	0	2000	15.50	
1.5	620	101.9	16.25	5899	1.5	211.5	13.12	1	1972	15.46	ı
1.75	717	98.5	16.5	6000	1.75	310	13.25	2	1969	15.46	
2	789	72.6	16.75	6105	2	382.6	13.35	3	1966	15.46	l
2.25	857	80.4	17	6194	2.25	463	13.46	4	1962	15.45	
2.5	956	68	17.25	6268	2.5	531	13.55	5	1960	15.45	
2.75	1042	89	17.5	6364	2.75	620	13.67				•
3	1117	74	17.75	6463	3	694	13.76		Five	min bleed o	eff
3.25	1194	81	18	6553	3.25	775	13.87	2100	Managara and		
3,5	1277	86	18.25	6639	3.5	861	13.99				
3.75	1354	78	18.5	6729	3.75	939	14.09] "	S	CLEED!	
4	1447	80	18.75	6838	4	1019	14.20	₹ .		- Vi-14	55.77
4.25	1526	81	19	6956	4,25	1100	14.30				
4.5	1612	83	19.25	7035	4.5	1183	14.41	1800	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 TO 150	100
4,75	1695	97	19.5	7117	4.75	1280	14.54]	0 1	2 3	4 5
5	1772	67	19.75	7216	5	1347	14.63]		MIN	
5,25	1861	89	20	7315	5.25	1436	14.75	1			
5,5	1941	64	20.25	7375	5.5	1500	14.84]			
5.75	2045	103	20.5	7421	5.75	1603	14.97]			
6	2122	88	20.75	7495	6	1691	15.09]			
6.25	2213	85	21	7582	6.25	1776	15.20	1			
6.5	2307	78	21.25	7555	6.5	1854	15.31]			
6.75	2392	96			6.75	1950	15.44				_
7	2480	50	1		7	2000	15.50	Vol. Bled	l Rack	7	RRIS

7 3/4" LINER TEST AND 6 1/2" FIT

RIG: DW Millennium

DATE: 1-Aug-02

FIELD: EL 2359


CSG. TEST DATA:

WELL: Newburn H-23

CASING DATA:

SIZE, INCH	WT/FT.	GRADE	CONN.	TVDmRT	MDmRT
7 3/4	46.1	HC-Q125	SLSF	5,324	5,403
	Initial f	I.T. DATA:			

	C3G. 1E	31 DAIA		minui	1.1. DAIA			
	BBLS	PSI	Delta "P"	BBLS	PSI	EMW		
Γ	0	65	0	0	60	15.47	LEAK OFF	IS
Г	0.25	125	20	0.25	80	15.49	MW-USED-	
Г	0.5	250	45	0.5	125	15.54	EMW	
Г	0.75	365	75	0.75	200	15.62	5	MIN
Г	1	480	75	1	275	15.70	MINUTES	P
Г	1.25	577.5	65	1.25	340	15.77	0	
Г	1.5	675	75	1.5	415	15.86	1	
Γ	1.75	765	80	1.75	495	15.94	2	_
Г	2	855	70	2	565	16.02	3	_
Г	2.25	952.5	85	2.25	650	16.12	4	T-1
Γ	2.5	1050	80	2.5	730	16.20	5	
Г	2.75	1140	80	2.75	810	16.29		
Γ	3	1230	60	3	870	16.36	1	
Г	3.25	1325	90	3.25	960	16.46	2100) Tara
Γ	3.5	1420	65	3.5	1025	16.53		4
Γ	3.75	1520		3.75				
Г	4	1620		4			₹ 2	
Г	4.25	1650		4.25				
Г	4.5	1680		4.5			1800	, 🕮
Γ	4.75	1755		4.75				1
Г	5	1830		5				
Г	5.25	1927.5		5.25				
Г	5.5	2025		5.5				
Γ	5.75	2105		5.75				
Γ	6	2185		6			Vol. Bied	i Ba
	6.25	2267.5		6.25				
	6.5	2350		6.5				
L	6.75	2442.5		6.75				
L	7	2535		7]	
L	7.25	2625				<u> </u>		
L	7.5	2715	L				1	40
L	7.75	2795						38 36
L	8	2875						34
L	8.25	2960					1	32
L	8.5	3045		ļ		ļ		28
L	8.75	3127.5	ļ	<u> </u>		<u> </u>		26
L	9	3210						24
L	9.25	3300		ļ			1	22
L	9.5	3390					1	18
L	9.75	3480		ļ	ļ			16
L	10	3570		ļ	<u> </u>	ļ	!	14
L	10.25	3655			ļ	<u> </u>	1	10
F	10.5	3740		ļ		ļ	1	8
H	10.75	3825		ļ	 	!	4	4
H	11	3910			<u> </u>	ļ	1	2
H	11.25	3970	 		ļ	<u> </u>	1	
H	11.5	4030				 	4	
		1	1	1		ı	1 i	

1450 psi

15.4 ppg

17.0 ppg

EMW

16.49

16.49

16.49

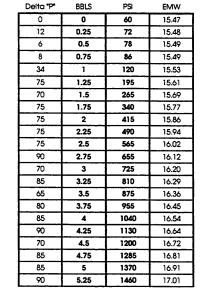
16.49

16.49

16.49

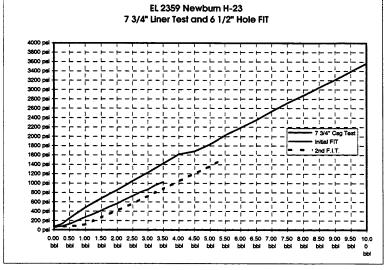
5 MIN BLEED OFF

993


993

993

993


993

993

2nd F.I.T. DATA:

Appendix I Time Distribution

Appendix I Time Distribution

Newburn H-23 Total Well Total Time Breakdown

	TIME BREAKDOWN	Time (hrs)	% of Total Time
	TIBLE DI LA COURT	i inic (iii c)	77.00
LOCATION	37 Prep. Clean Location	6	0.27
OPERATIONS	38 Move, Skid Rig	1	0.05
0	Total Group Hours	7	0.32
			0.00
	01 Circulate and Condition	91.5	4.12
DRILLING	02 Drilling, Rotating	424.5	19.11
OPERATIONS	04 Reaming	22.5	1.01
OF ENAMED IN	05 Tripping	224.5	10.11
	07 P/U and L/D Drill Pipe, BHA	60.5	2.72
	15 Drilling Float Equipment, Cleanout	56	2.52
	17 Leak Off Test	13	0.59
	21 Rig Maintenance	13.5	0.61
	59 Test/Inspect BHA/DS	0	0.00
	62 Safety Meetings	7.75	0.35
	Total Group Hours	913.75	41.13
	Total Group Hours	0.10.70	0.00
ВОР	12 N/U and N/D Wellhead	8.5	0.38
EQUIPMENT	13 N/U and N/D BOP's	17	0.38
EQUIPMENT	14 Test BOP's	62.5	2.81
	14 Test BOP's 53 Riser	18.5	0.83
	Total Group Hours	106.5	4.79
	Total Group Hours	100.5	0.00
CACINIC	00 Dun Drilling Coning	152	6.84
CASING	08 Run Drilling Casing	32.75	1.47
&	09 Cement Drilling Casing		
CEMENTING	10 Run/Production Casing	1	0.05
	11 Cement Production Casing	5.5	0.25
	16 Test Casing	5.5	0.25
	29 Remedial Cementing	0	0.00
	43 WOC	12	0.54
	Total Group Hours	208.75	9.40
			0.00
FORMATION	22 Coring	0	0.00
EVALUATION	25 Logging	131	5.90
	26 Sidewall Coring	33.5	1.51
	Total Group Hours	164.5	7.40
			0.00
ABANDON	19 Plug & Abandon, Suspend	203.5	9.16
SUSPEND	63 Set Cement Plug	0	0.00
	Total Group Hours	203.5	9.16
			0.00
UNSCHEDULED	18 Fishing	0	0.00
EVENTS	20 Rig Repair	46	2.07
	23 Well Control	84.5	3.80
	24 Other	6.5	0.29
	37 Prep, Clean Location	0	0.00
	42 WOW	2	0.09
	44 WOE	0	0.00
	45 WOO	0	0.00
	50 Lost Circulation	5.5	0.25
	50 Lost Circulation Lost ROV Visibility	5.5 7	0.25 0.32
	50 Lost Circulation Lost ROV Visibility Respud	5.5 7 13	0.25 0.32 0.59
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole	5.5 7 13 9	0.25 0.32 0.59 0.41
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle	5.5 7 13 9 7	0.25 0.32 0.59 0.41 0.32
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line	5.5 7 13 9 7 14	0.25 0.32 0.59 0.41 0.32 0.63
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test	5.5 7 13 9 7 14 12	0.25 0.32 0.59 0.41 0.32 0.63 0.54
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems	5.5 7 13 9 7 14 12 35.5	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH	5.5 7 13 9 7 14 12 35.5 22.5	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools	5.5 7 13 9 7 14 12 35.5 22.5 33	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems	5.5 7 13 9 7 14 12 35.5 22.5 33 29	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01 1.49
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools	5.5 7 13 9 7 14 12 35.5 22.5 33	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01 1.49 1.31
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems	5.5 7 13 9 7 14 12 35.5 22.5 33 29	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01 1.49
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE	5.5 7 13 9 7 14 12 35.5 22.5 33 29 91.5	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01 1.49 1.31
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control	5.5 7 13 9 7 14 12 35.5 22.5 33 29 91.5 68.5	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01 1.49 1.31 4.12 3.08
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment	5.5 7 13 9 7 14 12 35.5 22.5 33 29 91.5 68.5 26.5	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01 1.49 1.31 4.12 3.08 1.19
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing	5.5 7 13 9 7 14 12 35.5 22.5 33 29 91.5 68.5 26.5 8	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01 1.49 1.31 4.12 3.08 1.19 0.36 1.62 1.80
	50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing Unable to set retainer during plug and abandonment	5.5 7 13 9 7 14 12 35.5 22.5 33 29 91.5 68.5 26.5 8 36	0.25 0.32 0.59 0.41 0.32 0.63 0.54 1.60 1.01 1.49 1.31 4.12 3.08 1.19 0.36 1.62

TOTAL HOURS TOTAL DAYS 2221.5 92.56

100.0

Newburn H-23 1067 mm (42") Hole Time Breakdown

		TIME BREAKDOWN	Time (hrs)	% of Total Time
f				
ı	LOCATION	37 Prep, Clean Location	6	6.59
۱	OPERATIONS	38 Move, Skid Rig	1	1.10
L		Total Group Hours	7	7.69
I				0.00
ı		01 Circulate and Condition	3	3.30
ı	DRILLING	02 Drilling, Rotating	10	10.99
۱	OPERATIONS	04 Reaming	4.5	4.95
ı		05 Tripping	4.5	4.95
I		07 P/U and L/D Drill Pipe, BHA	3	3.30
۱		15 Drilling Float Equipment, Cleanout 17 Leak Off Test		0.00 0.00
I		17 Leak Off Test 21 Rig Maintenance		0.00
ı		59 Test/Inspect BHA/DS		0.00
ı		62 Safety Meetings	0.5	0.55
ı		Total Group Hours	25.5	28.02
ŀ				0.00
	ВОР	12 N/U and N/D Wellhead		0.00
	EQUIPMENT	13 N/U and N/D BOP's		0.00
۱		14 Test BOP's		0.00
I		53 Riser		0.00
I		Total Group Hours	0	0.00
I				0.00
	CASING	08 Run Drilling Casing	20.5	22.53
ı	&	09 Cement Drilling Casing	3.5	3.85
ı	CEMENTING	10 Run/Production Casing		0.00
ı		11 Cement Production Casing		0.00
ı		16 Test Casing		0.00
ı		29 Remedial Cementing		0.00
I		43 WOC	12 36	13.19
		Total Group Hours	36	39.56 0.00
	FORMATION	22 Coring	-	0.00
	EVALUATION	22 Coring 25 Logging		0.00
	EVALUATION	26 Sidewall Coring		0.00
		Total Group Hours	0	0.00
I				0.00
	ABANDON	19 Plug & Abandon, Suspend		0.00
ı	SUSPEND	63 Set Cement Plug		0.00
		Total Group Hours	0	0.00
ı				0.00
ł	UNSCHEDULED	18 Fishing		0.00
ı	EVENTS	20 Rig Repair	7	7.69
ı		23 Well Control	2.5	0.00 2.75
		24 Other 37 Prep, Clean Location	2.5	0.00
		42 WOW		0.00
1		44 WOE		0.00
		45 WOO	l	0.00
ı		50 Lost Circulation		0.00
١		Lost ROV Visibility		0.00
١		Respud	13	14.29
١	·	Tight Hole, Ream hole	1	0.00
١		Check suspect LPWH angle	ļ	0.00
١		Dropped fill up hose down choke line	1	0.00
١		Failed Casing Test	•	0.00
ı		Circulation Problems	I	0.00
		1		
		TIH/POOH		0.00
		TIH/POOH Lost Signal/Repair of MWD Tools		0.00
		TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems		0.00 0.00
		TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE		0.00 0.00 0.00
		TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control		0.00 0.00 0.00 0.00
		TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment		0.00 0.00 0.00 0.00 0.00
		TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing		0.00 0.00 0.00 0.00 0.00 0.00
		TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing Unable to set retainer during plug and abandonment		0.00 0.00 0.00 0.00 0.00
		TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing		0.00 0.00 0.00 0.00 0.00 0.00 0.00

Newburn H-23 660 mm (26") Hole Time Breakdown

	TIME BREAKDOWN	Time (hrs)	% of Total Time
LOCATION	37 Prep, Clean Location		0.00
OPERATIONS	38 Move, Skid Rig		0.00
	Total Group Hours	. 0	0.00
			0.00
	01 Circulate and Condition	7.5	3.57
DRILLING	02 Drilling, Rotating	36	17.14
OPERATIONS	04 Reaming	3	1.43
	05 Tripping	21	10.00
	07 P/U and L/D Drill Pipe, BHA	4	1.90
	15 Drilling Float Equipment, Cleanout	4	1.90
	17 Leak Off Test		0.00
	21 Rig Maintenance		0.00
	59 Test/Inspect BHA/DS		0.00
	62 Safety Meetings	2.75	1.31
	Total Group Hours	78.25	37.26
			0.00
ВОР	12 N/U and N/D Wellhead		0.00
EQUIPMENT	13 N/U and N/D BOP's	.17	8.10
	14 Test BOP's	15	7.14
	53 Riser	17	8.10
	Total Group Hours	49	23.33
			0.00
CASING	08 Run Drilling Casing	25	11.90
& .	09 Cement Drilling Casing	7.75	3.69
CEMENTING	10 Run/Production Casing		0.00
	11 Cement Production Casing		0.00
	16 Test Casing	2	0.95
	29 Remedial Cementing		0.00
	43 WOC		0.00
	Total Group Hours	34.75	16.55
			0.00
FORMATION	22 Coring		0.00
EVALUATION	25 Logging		0.00
1	26 Sidewall Coring		0.00
	Total Group Hours	0	0.00
			0.00
ABANDON	19 Plug & Abandon, Suspend		0.00
SUSPEND	63 Set Cement Plug	0	0.00
	Total Group Hours	<u> </u>	0.00
UNSCHEDULED	10 Fishing		0.00
EVENTS	18 Fishing 20 Rig Repair	5	2.38
EVENIS	23 Well Control		0.00
			0.00
		l	0.00
	24 Other		0.00
	24 Other 37 Prep, Clean Location		0.00
	24 Other 37 Prep, Clean Location 42 WOW		0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE	·	0.00 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO	·	0.00 0.00 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation	7	0.00 0.00 0.00 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility	7	0.00 0.00 0.00 0.00 0.00 3.33
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud		0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole	7 3 7	0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle	3 7	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line		0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71 0.00 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71 0.00 0.00 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71 0.00 0.00 0.00 0.00 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Tests Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing Unable to set retainer during plug and abandonment	3 7 14	0.00 0.00 0.00 0.00 0.00 3.33 0.00 1.43 3.33 6.67 5.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Newburn H-23 432 mm (17") Hole Time Breakdown

	TIME BREAKDOWN	Time (hrs)	% of Total Time
LOCATION	37 Prep, Clean Location		0.00
OPERATIONS	38 Move, Skid Rig		0.00
	Total Group Hours	0	0.00
			0.00
	01 Circulate and Condition	19.5	5.70
DRILLING	02 Drilling, Rotating	119	34.80
OPERATIONS	04 Reaming		0.00
	05 Tripping	37.5	10.96
	07 P/U and L/D Drill Pipe, BHA	5	1.46
	15 Drilling Float Equipment, Cleanout	3	0.88
	17 Leak Off Test	4	1.17
	21 Rig Maintenance	7	0.00
	59 Test/Inspect BHA/DS		0.00
	62 Safety Meetings	2	0.58
		190	55.56
······································	Total Group Hours	190	
	ACAMIN AND WATER AND		0.00
ВОР	12 N/U and N/D Wellhead	2.5	0.73
EQUIPMENT	13 N/U and N/D BOP's		0.00
	14 Test BOP's	17	4.97
	53 Riser		0.00
	Total Group Hours	19.5	5.70
			0.00
CASING	08 Run Drilling Casing	32.5	9.50
&	09 Cement Drilling Casing	11	3.22
CEMENTING	10 Run/Production Casing		0.00
	11 Cement Production Casing		0.00
	16 Test Casing		0.00
	29 Remedial Cementing		0.00
	43 WOC		0.00
	Total Group Hours	43.5	12.72
			0.00
FORMATION	22 Coring		0.00
EVALUATION	25 Logging	30	8.77
	26 Sidewall Coring	7.5	2.19
	Total Group Hours	37.5	10.96
			0.00
ABANDON	19 Plug & Abandon, Suspend		0.00
SUSPEND	ic i lag a i mailacii, cacpona		0.00
	63 Set Cement Plug		0.00
JUJPENU	63 Set Cement Plug Total Group Hours	0	0.00 0.00
JUJPENU	63 Set Cement Plug Total Group Hours	0	0.00
	Total Group Hours	0	0.00 0.00
UNSCHEDULED	Total Group Hours		0.00 0.00 0.00
	Total Group Hours 18 Fishing 20 Rig Repair	6.5	0.00 0.00 0.00 1.90
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control	6.5 1.5	0.00 0.00 0.00 1.90 0.44
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other	6.5	0.00 0.00 0.00 1.90 0.44 1.17
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility	6.5 1.5	0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	18 Fishing 18 Repair 29 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing Unable to set retainer during plug and abandonment	6.5 1.5 4	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing Unable to set retainer during plug and abandonment Trouble with Swaco Equipment	6.5 1.5	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSCHEDULED	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems TIH/POOH Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out Trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing Unable to set retainer during plug and abandonment	6.5 1.5 4	0.00 0.00 0.00 1.90 0.44 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Newburn H-23 311 mm (12 1/4") Hole Time Breakdown

		I /L	
	TIME BREAKDOWN	time (nrs)	% of Lotal Time
LOCATION	37 Prep, Clean Location		0.00
OPERATIONS	38 Move, Skid Rig		0.00
OFERATIONS	Total Group Hours	0	0.00
	Total aloup riouro	<u> </u>	0.00
	01 Circulate and Condition	33.5	10.18
DRILLING	02 Drilling, Rotating	56.5	17.17
OPERATIONS	04 Reaming	11.5	3.50
	05 Tripping	52	15.81
	07 P/U and L/D Drill Pipe, BHA	8.5	2.58
	15 Drilling Float Equipment, Cleanout	6.5	1.98
	17 Leak Off Test	3	0.91
	21 Rig Maintenance	3	0.91
	59 Test/Inspect BHA/DS		0.00
	62 Safety Meetings	0.5	0.15
	Total Group Hours	175	53.19
			0.00
ВОР	12 N/U and N/D Wellhead	6	1.82
EQUIPMENT	13 N/U and N/D BOP's		0.00
	14 Test BOP's	12.5	3.80
	53 Riser	1	0.00
	Total Group Hours	18.5	5.62
			0.00
CASING	08 Run Drilling Casing	37	11.25
&	09 Cement Drilling Casing	9.5	2.89
CEMENTING	10 Run/Production Casing		0.00
	11 Cement Production Casing		0.00
	16 Test Casing	2.5	0.76
	29 Remedial Cementing	1	0.00
	43 WOC	١	0.00
	Total Group Hours	49	14.89
FORMATION	22 Coring	ļ	0.00 0.00
EVALUATION	22 Coring 25 Logging	41.5	12.61
EVALUATION	26 Sidewall Coring	41.5	0.00
	Total Group Hours	41.5	12.61
<u></u>			0.00
ABANDON	19 Plug & Abandon, Suspend		0.00
SUSPEND	63 Set Cement Plug		0.00
	Total Group Hours	0	0.00
			0.00
UNSCHEDULED	18 Fishing	l	0.00
EVENTS	20 Rig Repair	3	0.91
	23 Well Control	1	0.00
	24 Other	1	0.00
	37 Prep, Clean Location		0.00
	42 WOW	1	0.00
1	44 WOE	1	0.00
1	45 WOO	1	0.00
1	50 Lost Circulation		0.00
1	Lost ROV Visibility		0.00
1	Respud	6	0.00 1.82
	Tight Hole, Ream hole Check suspect LPWH angle	, °	0.00
	Dropped fill up hose down choke line		0.00
	Failed Casing Test	1	0.00
	Circulation Problems	22	6.69
	TIH/POOH	1 7	0.30
	Lost Signal/Repair of MWD Tools	4.5	1.37
	Mud Motor Problems	1	0.00
	Clean out Trip for FE		0.00
1	Circulate and condition mud associated w/ well control		0.00
	Logging Equipment		0.00
	Running Casing		0.00
	Unable to set retainer during plug and abandonment		0.00
	Trouble with Swaco Equipment	0.5	0.15
	302 Other Drilling Equipment	8	2.43
1	Total Group Hours	45	13.68

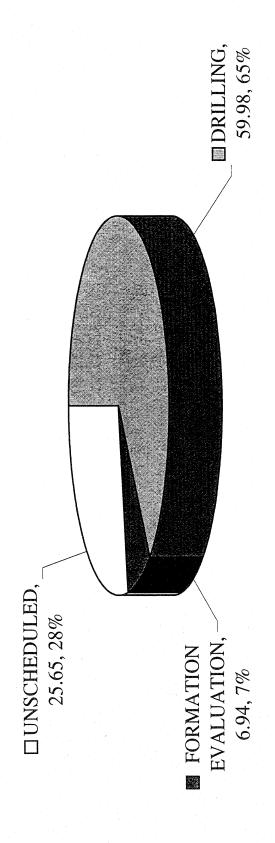
Newburn H-23 216 mm (8 1/2") Hole Time Breakdown

	TIME BREAKDOWN	Time (hrs)	% of Total Time
LOCATION	37 Prep, Clean Location		0.00
OPERATIONS	38 Move, Skid Rig		0.00
OFERATIONS	Total Group Hours	0	0.00
	Total Group Hours		0.00
		40	
	01 Circulate and Condition	10	1.53
DRILLING	02 Drilling, Rotating	82.5	12.60
OPERATIONS	04 Reaming		0.00
	05 Tripping	37.5	5.73
	07 P/U and L/D Drill Pipe, BHA	19	2.90
	15 Drilling Float Equipment, Cleanout	25	3.82
	17 Leak Off Test	4	0.61
	21 Rig Maintenance	4	0.61
		· -	0.00
	59 Test/Inspect BHA/DS	_	
	62 Safety Meetings	2	0.31
	Total Group Hours	184	28.09
			0.00
BOP	12 N/U and N/D Wellhead		0.00
EQUIPMENT	13 N/U and N/D BOP's		0.00
	14 Test BOP's	17	2.60
	53 Riser	1.5	0.23
	Total Group Hours	18.5	2.82
	Total Group Hours	10.5	
		-	0.00
CASING	08 Run Drilling Casing	37	5.65
&	09 Cement Drilling Casing	1	0.15
CEMENTING	10 Run/Production Casing	1	0.15
	11 Cement Production Casing	5.5	0.84
	16 Test Casing	1	0.15
	29 Remedial Cementing		0.00
	43 WOC	4	0.00
	Total Group Hours	45.5	6.95
			0.00
FORMATION	22 Coring		0.00
EVALUATION	25 Logging	41	6.26
	26 Sidewall Coring	16.5	2.52
	Total Group Hours	57.5	8.78
			0.00
ADANDON	19 Plug & Abandon, Suspend	l	0.00
ABANDON		1	0.00
SUSPEND	63 Set Cement Plug	0	0.00
	Total Group Hours	<u> </u>	
		İ	0.00
UNSCHEDULED	18 Fishing	1	0.00
	20 Rig Repair	14	2.14
EVENTS			12.67
EVENTS	23 Well Control	83	12.07
EVENTS	23 Well Control 24 Other	83	0.00
EVENTS	24 Other	83	1
EVENTS	24 Other 37 Prep, Clean Location		0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW	.2	0.00 0.00 0.31
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE		0.00 0.00 0.31 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO		0.00 0.00 0.31 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation		0.00 0.00 0.31 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO		0.00 0.00 0.31 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation		0.00 0.00 0.31 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility		0.00 0.00 0.31 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole		0.00 0.00 0.31 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle		0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line		0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test	2	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems	2	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement)	2 13.5 21.5	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools	2	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement)	2 13.5 21.5	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems	2 13.5 21.5 25	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE	13.5 21.5 25 91.5	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control	13.5 21.5 25 91.5 68.5	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment	13.5 21.5 25 91.5 68.5 10	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing	13.5 21.5 25 91.5 68.5	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing Unable to set retainer during plug and abandonment	13.5 21.5 25 91.5 68.5 10	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00
EVENTS	24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing	13.5 21.5 25 91.5 68.5 10	0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00

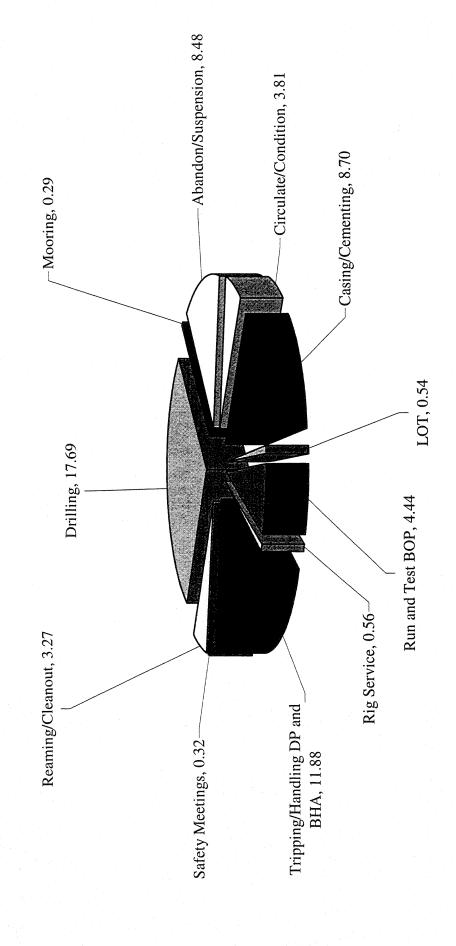
TOTAL HOURS TOTAL DAYS 655 27.29 100.0

Newburn H-23 165 mm (6 1/2") Hole Time Breakdown

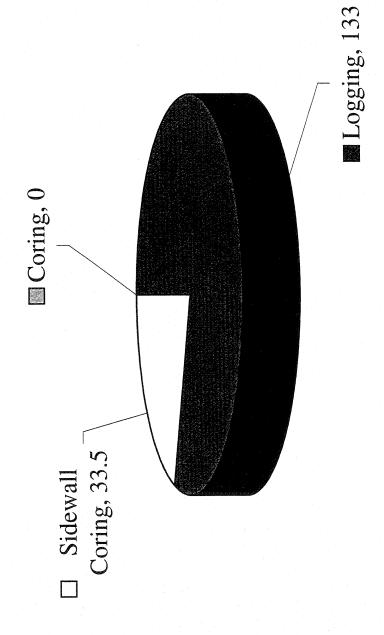
	TIME BREAKDOWN	Time (hrs)	% of Total Time
LOCATION	37 Prep, Clean Location		0.00
OPERATIONS	38 Move, Skid Rig		0.00
	Total Group Hours	0	0.00
			0.00
	01 Circulate and Condition	18	4.60
DRILLING	02 Drilling, Rotating	120.5	30.82
OPERATIONS	04 Reaming	3.5	0.90
	05 Tripping	72	18.41
	07 P/U and L/D Drill Pipe, BHA	21	5.37
	15 Drilling Float Equipment, Cleanout	17.5	4.48
	17 Leak Off Test	2	0.51
	21 Rig Maintenance 59 Test/Inspect BHA/DS	6.5	1.66 0.00
	62 Safety Meetings		0.00
	Total Group Hours	261	66.75
	Total Group Hours	201	0.00
ВОР	12 N/U and N/D Wellhead		0.00
EQUIPMENT	13 N/U and N/D BOP's	·	0.00
	14 Test BOP's	1	0.26
	53 Riser		0.00
	Total Group Hours	1	0.26
			0.00
CASING	08 Run Drilling Casing	-	0.00
&	09 Cement Drilling Casing		0.00
CEMENTING	10 Run/Production Casing		0.00
	11 Cement Production Casing		0.00
	16 Test Casing		0.00
	29 Remedial Cementing		0.00
	43 WOC		0.00
	Total Group Hours	0	0.00
			0.00
FORMATION	22 Coring		0.00
EVALUATION	25 Logging	18.5	4.73
	26 Sidewall Coring	9.5	2.43
	Total Group Hours	28	7.16
			0.00
ABANDON	19 Plug & Abandon, Suspend		0.00
SUSPEND	63 Set Cement Plug		0.00
9		0	0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours	0	0.00 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing		0.00 0.00 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair	0	0.00 0.00 0.00 0.00 2.69
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing		0.00 0.00 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other		0.00 0.00 0.00 0.00 2.69 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control		0.00 0.00 0.00 0.00 2.69 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location		0.00 0.00 0.00 0.00 2.69 0.00 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW		0.00 0.00 0.00 0.00 2.69 0.00 0.00 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE		0.00 0.00 0.00 0.00 2.69 0.00 0.00 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO	10.5	0.00 0.00 0.00 0.00 2.69 0.00 0.00 0.00 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud	10.5	0.00 0.00 0.00 0.00 2.69 0.00 0.00 0.00 0.00 0.00 1.41 0.00 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility	10.5	0.00 0.00 0.00 0.00 2.69 0.00 0.00 0.00 0.00 0.00 1.41 0.00
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle	10.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line	10.5	0.00 0.00 0.00 0.00 2.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test	10.5	0.00 0.00 0.00 0.00 2.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems	10.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	63 Set Cement Plug Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement)	10.5 5.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools	10.5 5.5 3.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems	10.5 5.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE	10.5 5.5 3.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control	10.5 5.5 3.5 29	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment	10.5 5.5 3.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing	10.5 5.5 3.5 29 16.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	Total Group Hours 18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing Unable to set retainer during plug and abandonment	10.5 5.5 3.5 29	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
SUSPEND	18 Fishing 20 Rig Repair 23 Well Control 24 Other 37 Prep, Clean Location 42 WOW 44 WOE 45 WOO 50 Lost Circulation Lost ROV Visibility Respud Tight Hole, Ream hole Check suspect LPWH angle Dropped fill up hose down choke line Failed Casing Test Circulation Problems Trip to check bit (trouble drilling cement) Lost Signal/Repair of MWD Tools Mud Motor Problems Clean out trip for FE Circulate and condition mud associated w/ well control Logging Equipment Running Casing	10.5 5.5 3.5 29 16.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

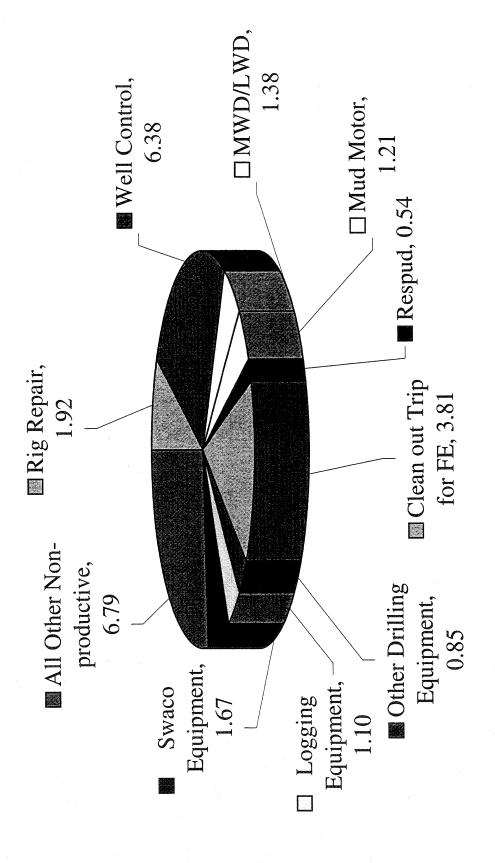

Newburn H-23 Abandonment/Suspension Time Breakdown

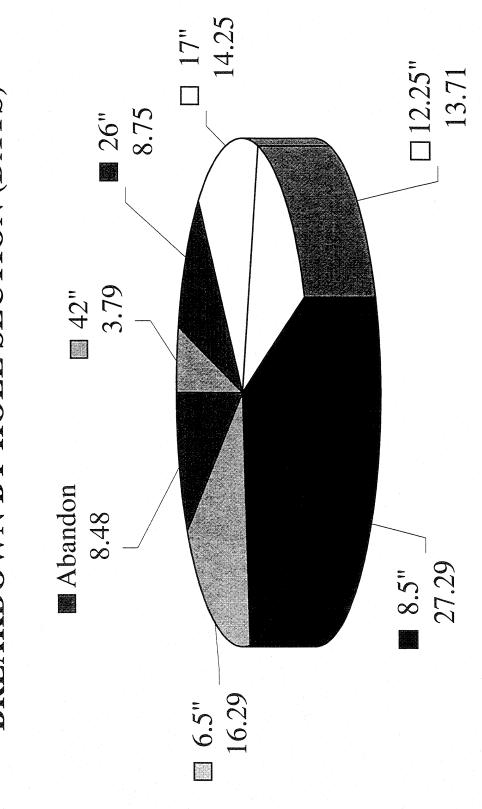
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	* TIME BREAKDOWN	Time (hrs)	% of Total Time
H	19 Plug & Abandon, Suspend	203.5	100.00
SUSPEND	63 Set Cement Plug Total Group Hours	203.5	100.00


TOTAL HOURS
TOTAL DAYS

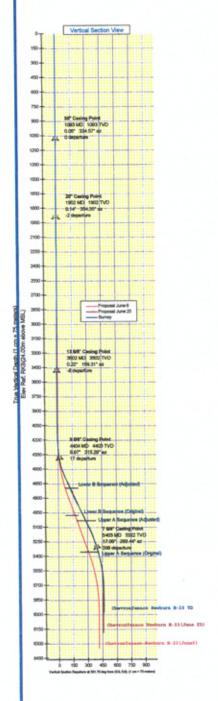
203.50 8.48

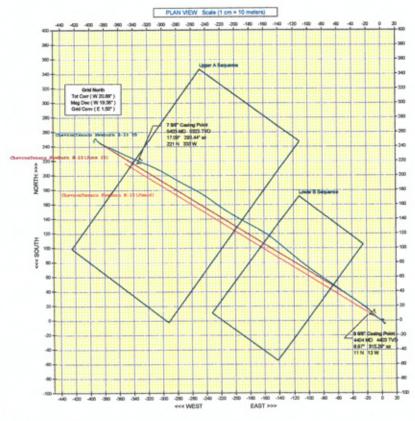

TOTAL TIME BREAKDOWN (DAYS) CHEVRON et al NEWBURN H-23


DRILLING OPERATIONS TIME BREAKDOWN CHEVRON et al NEWBURN H-23 (DAYS)


FORMATION EVALUATION BREAKDOWN CHEVRON et al NEWBURN H-23 (HOURS)

UNSCHEDULED EVENTS TIME BREAKDOWN CHEVRON et al NEWBURN H-23 (DAYS)


BREAKDOWN BY HOLE SECTION (DAYS) CHEVRON et al NEWBURN H-23 TIME



Appendix J Directional and Deviation Surveys

Appendix J
Directional and Deviation Surveys

Chevron Deepwater Well	Chevron Deepwater NS	ChevronTexaco Newburn H-23
Magnetic Forestation Dp. 68.730" Date: Appart 27, 2003 student: 80004-2003 Dp. 68.730" Det. 70004-47 PS. 70004-47	Buffoot Consilium	Size State Size Size (Set Size Size

Country Coverol (1964-1974) (1

Survey Report - Geodetic

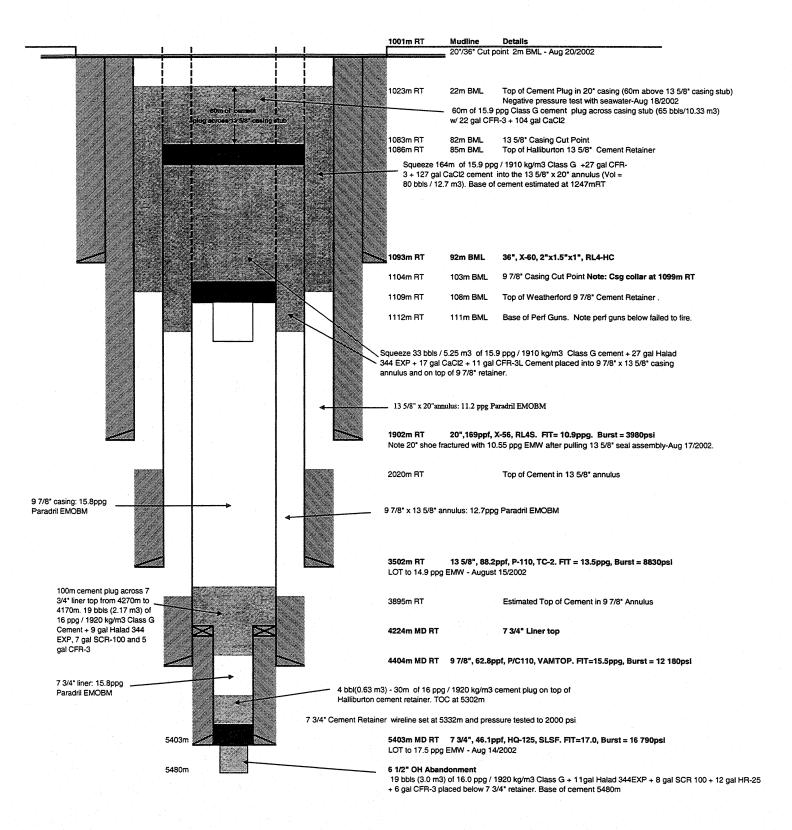
Survey / DLS Computation Method: Minimum Curvature / Lubinski	Vertical Section Azimuth: 301.700°	Vertical Section Origin: N 0.000 m, E 0.000 m	TVD Reference Datum: Rotary Table	TVD Reference Elevation: 24.000 m relative to MSL	Sea Bed / Ground Level Elevation: -977.000 m relative to MSL	Magnetic Declination: -19.434°	Total Field Strength: 51860.279 nT	Magnetic Dip: 66.740°	Declination Date: June 26, 2002	Magnetic Declination Model: BGGM 2001	North Reference: Grid North	Total Corr Mag North -> Grid North: -20.937°	Local Coordinates Referenced To: Well Head
Report Date: 26-Aug-2002	Client: ChevronTexaco	Field: ChevronTexaco Deepwater NS	Structure / Stot: ChevronTexaco Newburne H-23 / Drill site	Well: Chevron Deepwater Well	Borehole: Chevron Deepwater well	UWI/API#;	Survey Name / Date: Chevron Texaco Newburn H-23 New / August 2, 2002	Tort / AHD / DDI / ERD ratio:	Grid Coordinate System: NAD83 UTM Zone 20N	Location Lat/Long: N 43 12 16.726, W 60 48 18.442	Location Grid NE YX: N 4785879.544 m, E 678308.756 m	Grid Convergence Angle: +1.50302138°	Grid Scale Factor: 0.99999113

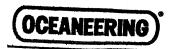
									GIND COORDINATES	dinates	CHOCLEDING	Geographic Coordinates
Station ID	₽	luci	Azim	2	VSec	N-S	E/·W	STO	Northing	Easting	Latitude	Longitude
	Œ	ε	ε	Œ	Œ	Œ	E	(°/30m)	(m)	(m)		
lie-in	0.0	00.00	231.40	0.00	0.00	0.00	0.00		4785879.54	678308.76	N 43 12 16.726	W 60 48 18.442
.	900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.0	4785879.54	678308.76	N 43 12 16.726	W 60 48 18.442
	986.76	0.08	234.06	986.76	0.02	-0.04	-0.05	0.03	4785879.51	678308.71	N 43 12 16.725	W 60 48 18.444
	999.25	0,34	147.72	999.25	-0.01	-0.07	-0.04	0.83	4785879.47	678308.72	N 43 12 16.724	W 60 48 18.444
	1002.91	0.18	26.25	1002.91	-0.05	-0.08	-0.03	3.77	4785879.47	678308.73	N 43 12 16.724	W 60 48 18.443
	1005.89	0.31	312.03	1005.89	-0.01	-0.07	-0.03	3.15	4785879.48	678308.72	N 43 12 16.724	W 60 48 18.443
	1009.04	0.52	284.03	1009.04	0.01	-0.06	-0.05	2.72	4785879.49	678308.70	N 43 12 16.724	W 60 48 18.444
	1011.88	0.25	5.32	1011.88	0.03	-0.05	-0.06	5.72	4785879.50	678308.69	N 43 12 16.725	W 60 48 18.445
	1014.92	0.39	240.43	1014.92	0.04	-0.05	-0.07	5.64	4785879.50	678308.68	N 43 12 16.725	W 60 48 18.445
	1020.85	0.30	319.29	1020.85	90.0	-0.04	-0.10	2.24	4785879.50	678308.66	N 43 12 16.725	W 60 48 18.446
	1026.51	0.14	239.22	1026.51	0.08	-0.04	-0.12	1.63	4785879.51	678308.64	N 43 12 16.725	W 60 48 18.447
	1031.80	0.27	257.33	1031.80	0.0	-0.04	-0.13	0.81	4785879.50	678308.62	N 43 12 16.725	W 60 48 18.448
	1038.27	0.40	287.80	1038.27	0.12	-0.04	-0.17	1.00	4785879.50	678308.59	N 43 12 16.725	W 60 48 18.450
	1042.83	0.30	305.01	1042.83	0.15	-0.03	-0.19	0.95	4785879.52	678308.56	N 43 12 16.725	W 60 48 18.451
	1050.60	0.10	199.16	1050.60	0.17	-0.02	-0.21	1.32	4785879.52	678308.54	N 43 12 16.725	W 60 48 18.451
	1056.25	0.15	291.07	1056.25	0.18	-0.02	-0.22	0.97	4785879.52	678308.53	N 43 12 16.725	W 60 48 18.452
	1060.28	0.24	319.81	1060.28	0.19	-0.05	-0.23	0.97	4785879.53	678308.52	N 43 12 16.726	W 60 48 18.452
	1067.02	0.22	327.58	1067.02	0.21	0.01	-0.25	0.16	4785879.55	678308.51	N 43 12 16.726	W 60 48 18.453

W 60 48 18.453 W 60 48 18.454	/ 60 48 18.454 / 60 48 18.454 / 60 48 18.453 / 60 48 18.452 / 60 48 18.450	W 60 48 18.448 W 60 48 18.444 W 60 48 18.441 W 60 48 18.440 W 60 48 18.437	W 60 48 18.433 W 60 48 18.431 W 60 48 18.428 W 60 48 18.427 W 60 48 18.420	W 60 48 18.415 W 60 48 18.410 W 60 48 18.406 W 60 48 18.401 W 60 48 18.399	W 60 48 18.395 W 60 48 18.389 W 60 48 18.383 W 60 48 18.379 W 60 48 18.375	W 60 48 18.369 W 60 48 18.359 W 60 48 18.353 W 60 48 18.346 W 60 48 18.345	W 60 48 18.349 W 60 48 18.353 W 60 48 18.357 W 60 48 18.362 W 60 48 18.366
N 43 12 16.727 W N 43 12 16.728 W	N 43 12 16.729 W N 43 12 16.730 W N 43 12 16.729 W N 43 12 16.729 W N 43 12 16.730 W	N 43 12 16.731 W N 43 12 16.732 W N 43 12 16.733 W N 43 12 16.734 W N 43 12 16.735 W	N 43 12 16.735 V N 43 12 16.732 V N 43 12 16.732 V N 43 12 16.733 V N 43 12 16.736 V	N 43 12 16.739 V N 43 12 16.741 V N 43 12 16.740 V N 43 12 16.739 V N 43 12 16.739 V	N 43 12 16.739 V N 43 12 16.739 V N 43 12 16.736 V N 43 12 16.731 V N 43 12 16.731 V	N 43 12 16.729 V N 43 12 16.725 V N 43 12 16.722 V N 43 12 16.720 V N 43 12 16.721 V	N 43 12 16.725 V N 43 12 16.729 V N 43 12 16.735 V N 43 12 16.740 V N 43 12 16.743 V
678308.50 678308.49	678308.49 678308.48 678308.50 678308.53 678308.53	678308.62 678308.71 678308.78 678308.79 678308.87	678308.95 678309.00 678309.06 678309.10 678309.24	678309.37 678309.46 678309.57 678309.68 678309.72	678309.81 678309.93 678310.07 678310.16 678310.27	678310.41 678310.62 678310.76 678310.93 678310.95	678310.85 678310.76 678310.66 678310.56 678310.47
4785879.57 4785879.60	4785879.61 4785879.66 4785879.64 4785879.62 4785879.66	4785879.70 4785879.74 4785879.75 4785879.78	4785879.83 4785879.75 4785879.73 4785879.76	4785879.96 4785880.02 4785880.01 4785879.98 4785879.98	4785879.98 4785879.98 4785879.89 4785879.79	4785879.67 4785879.57 4785879.49 4785879.41	4785879.56 4785879.70 4785879.88 4785880.02 4785880.13
0.29	0.77 0.09 0.34 0.28 0.15	0.05 0.14 0.27 0.12	0.30 0.11 0.27 0.22 0.05	0.06 0.22 0.33 0.27 0.08	0.23 0.29 0.23 0.35	0.18 0.20 0.19 0.19	0.07 0.17 0.00 0.15 0.04
-0.26 -0.26	-0.27 -0.28 -0.26 -0.22 -0.19	-0.14 -0.04 0.02 0.04	0.19 0.24 0.30 0.34	0.61 0.71 0.81 0.92	1.06 1.18 1.32 1.41 1.51	1.65 1.87 2.00 2.18 2.19	2.10 2.00 1.90 1.80
0.03	0.07 0.11 0.07 0.10	0.16 0.19 0.24 0.29	0.28 0.21 0.21 0.33	0.42 0.48 0.44 0.43	0.43 0.44 0.35 0.25 0.18	0.03 0.06 0.06 0.13	0.02 0.16 0.33 0.48 0.58
0.24 0.25	0.26 0.30 0.27 0.23	0.20 0.14 0.09 0.09	-0.01 -0.10 -0.16 -0.18	-0.30 -0.35 -0.45 -0.55	-0.67 -0.77 -0.94 -1.06	1.34 1.58 1.73 1.92	-1.78 -1.62 -1.44 -1.28
1074.32 1081.43	1088.98 1120.37 1151.08 1180.08	1235.02 1264.11 1292.99 1321.83	1373.75 1407.85 1438.06 1451.63	1521.72 1551.38 1578.10 1605.49	1665.53 1689.18 1721.21 1749.89 1773.08	1794.93 1835.11 1859.78 1889.76	1937.98 1966.52 1994.84 2024.13 2052.40
344.74 355.25	329.90 344.36 143.61 357.61 46.80	59.05 75.10 340.55 32.03 65.71	128.27 169.17 69.92 43.74 54.32	57.88 61.19 106.66 87.66 119.20	85.38 90.68 145.41 124.99 121.19	104.67 125.33 120.04 104.33 324.94	315.42 331.06 331.23 316.93
0.18 0.23	0.04 0.13 0.22 0.06 0.17	0.14 0.26 0.00 0.12 0.26	0.19 0.15 0.23 0.23	0.33 0.11 0.12 0.06	0.29 0.29 0.37 0.17	0.39 0.29 0.29 0.33	0.28 0.41 0.29 0.26
1074.32 1081.43	1088.98 1120.37 1151.08 1180.08	1235.02 1264.11 1292.99 1321.83 1349.38	1373.75 1407.85 1438.06 1451.63	1521.72 1551.38 1578.10 1605.49	1665.53 1689.18 1721.21 1749.89	1794.94 1835.12 1859.79 1899.77	1937.99 1966.53 1994.85 2024.14 2052.41

W 60 48 18.369 W 60 48 18.373 W 60 48 18.376 W 60 48 18.379 W 60 48 18.382	W 60 48 18.384 W 60 48 18.397 W 60 48 18.390 W 60 48 18.391 W 60 48 18.390	W 60 48 18.388 W 60 48 18.386 W 60 48 18.384 W 60 48 18.381 W 60 48 18.382	W 60 48 18.384 W 60 48 18.387 W 60 48 18.391 W 60 48 18.396 W 60 48 18.396	60 48 60 48 60 48 60 48 60 48 60 48	W 60 48 18.382 W 60 48 18.375 W 60 48 18.367 W 60 48 18.358 W 60 48 18.348	W 60 48 18.338 W 60 48 18.327 W 60 48 18.319	W 60 48 18.310 W 60 48 18.301 W 60 48 18.292
N 43 12 16.747 N 43 12 16.751 N 43 12 16.755 N 43 12 16.759 N 43 12 16.764 N 43 12 16.764 N	N 43 12 16.768 N 43 12 16.770 N 43 12 16.772 N 43 12 16.775 N 43 12 16.775 N 43 12 16.778	N 43 12 16.780 N 43 12 16.782 N 43 12 16.782 N 43 12 16.782 N 43 12 16.780	N 43 12 16.778 N 43 12 16.775 N 43 12 16.772 N 43 12 16.770 N 43 12 16.768	43 12 43 12 43 12 43 12 43 12 43 12 43 12 12 12 12 12 12 12 12 12 12 12 12 12	N 43 12 16.713 N 43 12 16.705 N 43 12 16.696 N 43 12 16.684 N 43 12 16.671	43 12 43 12 43 12 43 12	N 43 12 16.625 N 43 12 16.618 N 43 12 16.613
678310.38 678310.30 678310.23 678310.15 678310.09	678310.03 678309.96 678309.90 678309.87 678309.90	678309.93 678309.98 678310.02 678310.08	678310.03 678309.95 678309.87 678309.81 678309.76	678309.71 678309.67 678309.65 678309.77 678309.86 678309.86	678310.11 678310.28 678310.47 678310.69 678310.92	678311.17 678311.41 678311.61	678311.82 678312.03 678312.24
4785880.24 4785880.36 4785880.47 4785880.60 4785880.74	4785880.86 4785880.95 4785881.01 4785881.08	4785881.25 4785881.29 4785881.32 4785881.29 4785881.24	4785881.18 4785881.09 4785881.00 4785880.93 4785880.87	4785880.79 4785880.63 4785880.33 4785880.09 4785879.82	4785879.19 4785878.93 4785878.66 4785878.30	4785877.52 4785877.14 4785876.79	4785876.51 4785876.30 4785876.13
0.06 0.02 0.05 0.08	0.12 0.01 0.24 0.01	0.08 0.04 0.05 0.06 0.15	0.02 0.13 0.09 0.07	0.06 0.08 0.13 0.10 0.10	0.16 0.13 0.13 0.04	0.09 41.0	0.17 0.10 0.15
1.62 1.54 1.47 1.33	1.27 1.21 1.14 1.12	1.18 1.22 1.33 1.32	1.27 1.19 1.11 1.05	0.96 0.90 0.94 0.94 1.01 1.22	1.36 1.52 1.72 1.93	2.65 2.65 2.86	3.06 3.27 3.49
0.69 0.82 0.93 1.20	1.32 1.40 1.53 1.63	1.70 1.75 1.78 1.70	1.63 1.45 1.39 1.33	1.24 1.13 0.98 0.78 0.55 0.27	-0.35 -0.61 -0.89 -1.24	-2.02 -2.02 -2.41 -2.75	-3.03 -3.25 -3.41
-1.02 -0.88 -0.77 -0.63	-0.39 -0.29 -0.14 -0.12	-0.11 -0.12 -0.21 -0.23	-0.22 -0.20 -0.18 -0.16	-0.16 -0.18 -0.25 -0.39 -0.58 -0.80	1.34 1.61 1.93 1.229	3.12 3.52 3.88 3.88	-4.20 -4.49 -4.76
2080.94 2109.12 2137.07 2166.34 2195.20	2223.49 2251.30 2281.46 2309.07 2337.12	2365.93 2394.78 2423.59 2480.48 2509.45	2538.39 2566.93 2595.39 2624.27 2652.33	2680.90 2709.17 2737.76 2767.13 2794.93 2822.98	2880.40 2909.69 2938.04 2965.76	3022.74 3022.35 3052.35	3109.51 3137.43 3166.14
325.05 326.90 329.89 328.35 345.16	322.13 321.71 303.88 14.38	36.73 52.53 64.94 147.37 214.22	218.75 223.33 218.80 222.52 213.43	208.13 201.08 173.08 163.95 160.44 163.17	153.56 141.63 146.97 150.10	144.26 152.77 145.51	140.18 131.45 122.32
0.31 0.29 0.25 0.33	0.27 0.17 0.18 0.20 0.19	0.12 0.08 0.10 0.15	0.17 0.29 0.21 0.14	0.22 0.27 0.35 0.46 0.55 0.64	0.59 0.61 0.77 0.93	0.90 0.86 0.77	0.62 0.60 0.49
2080.95 2109.13 2137.08 2166.35 2195.21	2223.50 2251.31 2281.47 2309.08	2365.94 2394.79 2423.60 2480.49 2509.46	2538.40 2566.94 2595.40 2624.28 2652.34	2680.91 2709.18 2737.78 2767.15 2794.95 2823.00	2880.42 2909.71 2938.07 2965.79	2994.76 3022.78 3052.39 3080.93	3109.56 3137.48 3166.19

283 275	18.265 18.265 18.261 18.257	251 252 252 250 250	18.249 18.248 18.247 18.247 18.247	247 248 249 249	18.250 18.251 18.251 18.251 18.253	.255 .257 .258 .258 .256	257 268 293 334 390
W 60 48 18.283 W 60 48 18.275	W 60 48 18.265 W 60 48 18.265 W 60 48 18.261 W 60 48 18.257 W 60 48 18.252	W 60 48 18.251 W 60 48 18.252 W 60 48 18.252 W 60 48 18.250 W 60 48 18.249	W 60 48 18.249 W 60 48 18.248 W 60 48 18.247 W 60 48 18.247 W 60 48 18.247	W 60 48 18.248 W 60 48 18.248 W 60 48 18.249 W 60 48 18.249 W 60 48 18.249	W 60 48 18.250 W 60 48 18.251 W 60 48 18.251 W 60 48 18.251 W 60 48 18.253	W 60 48 18.255 W 60 48 18.257 W 60 48 18.258 W 60 48 18.258 W 60 48 18.256	W 60 48 18.257 W 60 48 18.268 W 60 48 18.293 W 60 48 18.334 W 60 48 18.390
N 43 12 16.608 N 43 12 16.605	43 12 16.602 43 12 16.598 43 12 16.595 43 12 16.593 43 12 16.590	43 12 16.587 43 12 16.583 43 12 16.579 43 12 16.573 43 12 16.571	N 43 12 16.570 N 43 12 16.570 N 43 12 16.570 N 43 12 16.569 N 43 12 16.570	N 43 12 16.570 N 43 12 16.569 N 43 12 16.568 N 43 12 16.567 N 43 12 16.566	N 43 12 16.565 N 43 12 16.564 N 43 12 16.565 N 43 12 16.566 N 43 12 16.566	N 43 12 16.565 N 43 12 16.566 N 43 12 16.567 N 43 12 16.566 N 43 12 16.563	N 43 12 16.564 N 43 12 16.574 N 43 12 16.597 N 43 12 16.632 N 43 12 16.677
678312.44 N 678312.62 N	678312.75 N 678312.85 N 678312.94 N 678313.05 N 678313.15 N	678313.17 N 678313.17 N 678313.17 N 678313.20 N 678313.24 N	678313.24 N 678313.25 N 678313.28 N 678313.29 N 678313.29 N	678313.28 N 678313.26 N 678313.24 N 678313.24 N 678313.23 N	678313.22 N 678313.21 N 678313.19 N 678313.19 N 678313.15 N	678313.10 N 678313.06 N 678313.03 N 678313.03 N 678313.08 N	678312.81 N 678312.81 N 678312.22 N 678311.27 N 678310.97 N
4785876.01 4785875.91	4785875.82 4785875.71 4785875.62 4785875.54 4785875.46	4785875.38 4785875.25 4785875.11 4785874.95 4785874.86	4785874.83 4785874.83 4785874.83 4785874.83	4785874.83 4785874.80 4785874.77 4785874.75 4785874.75	4785874.68 4785874.67 4785874.70 4785874.72 4785874.72	4785874.70 4785874.70 4785874.74 4785874.73 4785874.63	4785874.66 4785874.97 4785875.66 4785876.69
0.05	0.12 0.07 0.14 0.14 0.15	0.21 0.15 0.09 0.09	0.16 0.14 0.07 0.03	0.09 0.06 0.07 0.11	0.06 0.10 0.10 0.06	0.06 0.14 0.05 0.32 0.08	0.62 0.90 1.20 1.06
3.69 3.86	4.00 4.10 4.29 6.39	4, 4, 4, 4, 4, 4, 4, 4, 5, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,	4.52 4.52 4.53 4.53	4.52 4.49 4.48 4.48	4.45 4.44 4.43 4.39	4.35 4.27 4.28 4.32	4.30 4.05 3.47 2.52 1.21
-3.53 -3.63	3.72 3.84 3.92 4.00	4.16 4.29 4.59 4.59	4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.74 4.78 4.80 4.83	4.86 4.85 4.85 4.82 4.82	4.84 4.84 4.80 4.82 4.91	.4.88 .4.58 .3.89 .2.85
-4.99 -5.19	5.36 5.50 5.62 5.75 5.88	-5.95 -6.01 -6.09 -6.20	6.29 6.30 6.33 6.33	6. 6. 6. 6. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	-6.35 -6.35 -6.32 -6.30	-6.24 -6.20 -6.16 -6.17	-6.22 -5.85 -4.99 -1.80
3194.85 3224.26	3251.94 3280.59 3309.22 3338.04 3366.64	3395.67 3424.02 3452.54 3487.97 3512.54	3541.46 3569.85 3598.50 3626.95 3655.91	3684.29 3712.77 3741.66 3770.25 3798.83	3827.82 3856.75 3884.88 3913.68	3970.68 3999.89 4029.51 4056.06 4084.54	4113.67 4141.91 4170.75 4198.87 4226.98
121.05 115.96	133.72 144.16 120.61 130.63 127.66	191.53 177.17 180.03 159.36	266.39 83.05 110.24 340.55 3.83	227.65 187.45 234.38 140.98 215.11	179.92 285.51 4.34 279.65 265.08	237.12 311.41 340.13 163.36	322.55 321.53 318.57 316.32
0.44	0.33 0.29 0.33 0.19	0.20 0.33 0.29 0.14	0.09 0.03 0.03 0.03	0.00 0.09 0.09 0.09	0.06 0.09 0.04 0.10	0.12 0.10 0.10 0.18 0.23	0.37 1.22 2.37 3.36 4.37
3194.90 3224.31	3251.99 3280.64 3309.27 3338.09 3366.69	3395.72 3424.07 3452.59 3488.02 3512.59	3541.51 3569.90 3598.55 3627.00	3684.34 3712.82 3741.71 3770.30 3798.88	3827.87 3856.80 3884.93 3913.73 3942.74	3970.73 3999.94 4029.56 4056.11 4084.59	4113.72 4141.97 4170.82 4198.98


W 60 48 18.463 W 60 48 18.552 W 60 48 18.652 W 60 48 18.765 W 60 48 18.785	W 60 48 18.969 W 60 48 19.128 W 60 48 19.352 W 60 48 19.947 W 60 48 20.292 W 60 48 20.673 W 60 48 21.083	W 60 48 21.903 W 60 48 22.294 W 60 48 22.690 W 60 48 23.090 W 60 48 23.920 W 60 48 23.920	W 60 48 24.331 W 60 48 24.753 W 60 48 25.222 W 60 48 25.749 W 60 48 26.787 W 60 48 26.787 W 60 48 27.279 W 60 48 27.737 W 60 48 27.737 W 60 48 28.600	W 60 48 29.043 W 60 48 29.542 W 60 48 30.046 W 60 48 30.546 W 60 48 30.960 W 60 48 31.320 W 60 48 31.667 W 60 48 31.021
N 43 12 16.731 N 43 12 16.785 N 43 12 16.842 N 43 12 16.911 N 43 12 16.983	N 43 12 17.056 N 43 12 17.179 N 43 12 17.328 N 43 12 17.484 N 43 12 17.651 N 43 12 17.834 N 43 12 18.039 N 43 12 18.261		N 43 12 20.176 N 43 12 20.449 N 43 12 20.714 N 43 12 21.224 N 43 12 21.224 N 43 12 21.636 N 43 12 21.861 N 43 12 22.038 N 43 12 22.038	N 43 12 22.569 N 43 12 22.795 N 43 12 23.008 N 43 12 23.222 N 43 12 23.576 N 43 12 23.576 N 43 12 23.576
678308.27 678306.24 678303.93 678301.31 678298.81	678296.59 678292.91 678287.74 678281.34 678274.04 678266.12 678257.35	678229.05 678229.05 678220.05 678210.95 678201.72 678192.33 678182.57	678173.06 678163.33 678152.52 678140.43 678126.71 678116.64 678105.36 678094.84 678084.69	678064.80 678053.35 678041.81 678030.35 678020.85 678012.60 678014.65 677996.57
4785879.68 4785881.30 4785883.01 4785885.04 4785887.22	4785889.41 4785893.11 4785897.59 4785902.22 4785907.18 4785912.64 4785918.71 4785918.71	4785931.79 4785938.55 4785944.85 4785951.39 4785958.38 4785965.94 4785965.94	4785982.49 4785990.66 4785998.57 4786013.62 4786019.18 4786025.79 4786032.45 4786039.50 4786046.61	4786053.53 4786060.20 4786072.77 4786072.77 4786078.35 4786083.24 4786087.58
0.75 0.77 0.45 0.55	2.17 2.21 2.22 2.21 2.02 2.02 1.82	0.38 0.41 0.64 0.64 0.43	0.39 1.45 2.17 2.17 0.82 0.76 0.76 0.38	2.22 2.13 0.47 3.13 4.37 1.85 1.25
-0.49 -2.52 -4.83 -7.44 -9.95	-12.17 -15.85 -21.01 -27.42 -34.71 -42.64 -51.40	-00.04 -70.03 -79.71 -88.71 -97.80 -107.04 -116.43	-135.70 -145.43 -156.23 -168.33 -182.05 -203.40 -213.92 -224.06 -233.76	-243.96 -255.40 -266.95 -278.41 -287.91 -296.16 -304.10
0.13 1.75 3.47 5.50 7.68	9.87 13.56 18.04 22.68 27.63 33.09 39.17 45.78	52.24 59.01 65.31 71.85 78.84 86.40 94.65	102.95 111.12 119.02 126.51 134.08 139.63 146.25 152.91 152.91 167.07	173.98 180.66 186.92 193.23 198.80 203.70 208.04 211.96
0.48 3.07 5.93 9.22 12.50	15.54 20.61 27.36 35.24 44.05 53.67 64.32 64.32	19.79 109.79 120.97 144.46 157.10	169.55 182.12 195.47 209.69 225.34 236.83 249.90 262.35 274.69 286.68	298.99 312.23 325.34 338.41 349.42 359.02 368.05 377.00
4255.72 4284.11 4312.56 4342.92 4370.30	4392.17 4420.70 4449.39 4477.13 4505.27 4533.13 4560.76	4567.93 4613.51 4640.88 4667.41 4722.53 4748.90 4775.57	4801.79 4827.76 4853.94 4880.45 4909.52 4931.82 4958.25 4984.34 5011.06	5063.88 5090.80 5116.35 5143.34 5170.28 5197.68 5225.61
310.77 306.56 306.62 309.02 312.84	315.92 314.53 308.11 303.90 304.46 304.64	305.23 304.96 305.06 306.34 307.88 309.73 310.72	311.48 308.57 303.93 299.62 298.15 299.69 301.11 303.59 306.00	301.91 298.68 298.27 299.48 301.52 299.77 297.47
4.93 5.55 5.98 6.48 7.35	8.89 11.83 15.02 16.81 18.00 20.11 22.10	23.54 23.54 23.13 22.26 23.50 25.61 25.61	25.80 26.36 27.85 28.61 28.04 26.53 26.13 24.90 24.74 24.43	25.42 27.00 27.41 24.32 20.15 18.46 17.46
4255.99 4284.50 4313.09 4343.63 4371.21	4393.30 4422.31 4451.81 4480.65 4510.14 4539.62 4569.24	4598.75 4626.69 4656.50 4685.21 4715.06 4773.86 4803.43	4832.53 4861.44 4890.85 4920.94 4953.96 5008.54 5008.54 5037.45 5066.89 5095.80	5125.05 5155.06 5183.78 5213.78 5242.89 5271.93 5301.29


Wolff & deWardt 2.0000 sigma		MD To (m)
Survey Error Model: Wolff	Surveying Programme:	MD From (m)

EOU Freq Survey Tool Type	Act-Stns Anadrill MWD
MD To (m)	6070.00
MD From (m)	0.00

Appendix K Abandonment Details

Appendix K Abandonment Details

Oceaneering, International, Inc.

931 Highwey 90 East Bayou Vista, LA 70380 Tel. (504) 395-5247 Fax (504) 395-5330

Date: 8/21/2002

Client: Chevron/Texaco

CLEAR BOTTOM CERTIFICATION

Location: Newburn H-23

Vessel: Deepwater Millennium

On _____Oceaneering AWS personnel performed a post well site abandonment bottom survey using the combination of video and 360 degree scanning sonar. The survey was performed at Newburn H-23 The AWS system performing the bottom survey was the Magnum 50 remotely operated vehicle interfaced to the Simrad MS 90 scanning sonar.

In performing our ocean bottom survey, we certify that the area inspected complies with our interpretation of clean bottom defined by the U.S. Department of the Interior, Notice to Lessees, Operators of Interim Requirements for site arrance (and verification) of abandoned oil and gas structures in the Gulf of Mexico.

We appreciate this opportunity to provide this survey for you and look forward to working with you again.

If there are any further questions regarding this survey or general AWS services, please contact Dell Dodson, AWS Operations Manager at our Morgan City, Louisiana facility (504) 395-5247.

Sincerely,

AWS Supervisor

Oceaneering International, Inc.

Gulf Coast Division

/ly

Appendix L Well Schematic

Appendix L Well Schematic

Final As Drilled Stick Diagram EL 2359 - Newburn H-23 TSF Deepwater Millennium EL 2359 Newburn H-23 RWFEC-R2253 N=4 785 879.120 m E= 678 308.970 m WBS No. UWI Well Number: 300H234320060450 Lat/Long: 43° 12' 16.7121" N / 60° 48' 18.4330" W (NAD83) KB to MSL (ft): 24 m Water Depth (ft): 977 m KB to ML (ft): ABB Vetco 18 3/4" HPWH 18-3/4" HPWH @ +4.5 m AML +3.64 m AML ABB Vetco 36" LPWH 36" LPWH @ FIT DIRECTIONAL CASING Cesing HOLE MD/TVD SIZE & CEMENT PROGRAM 1,093 m 42" 36"X2",1.6",1" WT, X-50, X55 Vetoo RL4-HC/RL4-F Annular Volume + 200% Excess to mudine 26" Straight 1,902 m 20" 0.812" WT, X-56, 169ppf, Vetoo RLA-S 11.1 ppg Hole Annular Volume + 100% Excess to mudine Lead-Foamed cement@ 12.0 ppg- 1044 bbls sturry 17 Tail G @ 16.0 ppg+ accel - 100m - 250 bbls Top of 13 5/8" cement 2020m MD Hole 13 5/8", 88.2 ppf, P-110, TC-II 13.5 ppg 3,502 m Annular Volume to 2200m at 10% OH Excess Top of 9 7/8" cement 3895m Lead: class G @ 13.0 ppg, *G* + 3.3% PHG to 2200m Tait class G @ 15.8 ppg, 3300m (200m above shoe). Directional KOP = 4110m PT 12-1/4" 4224 m Build to +/-10 deg TOL 4224m 15.2 ppg 9-7/8", 62.8 ppf, P/C-110, VAM TOP 4,404 m / 4403m Annular Volume to 3800m at 10% OHE Lead class G @ 15.6#, "G" + 0.2% Super CBL to 3800m Tail: class G @ 15.6#, 4345m Directional Max Angle 28.6deg 8-1/2 5403 m / 5324m 7%", 62.1 ppt, HC Q-125, SLSF 17.0ppg Annular Volume to 4224m + 30% OHE Class G + 35% Silica Flour @ 15.6#, to 4224m 6 1/2 Directional at +/- 1 -1.5dec 6070 m / 5982m TD

Appendix M Composite Wireline Well Log

Appendix M Composite Wireline Well Log

Multi-Run Composite Log (see Log Box 3)

Appendix N Daily Geological Reports

Appendix N
Daily Geological Reports

Geological Morning Report Storage Units: Metric

Jun 3, 2002

Well Name: Chevron et al Newburn H-23

Location:

Spud Date: Days from Spud:

May 22, 2002 @ 00:30

K.B. Elevation

12 24.00

Ground Elevation:

-977.00

Date: Jun 3, 2002

Time: 2400 hrs

Rotating Hours:

0.00 hrs

Depth:

1,917.00

Progress: Average R.O.P.:

0.00

Daily Costs:

\$1,502,747

Accumulated Cost:

\$21,619,661

Formation: Eocene

Operational Status: Clean sand trap & prepare mud tanks tp drill out.

Operational Summary: POOH after successfully pressure testing casing; Make up BHA, RIH to the top of BOP's, while cleaning mud tanks; offload SBM from supply boats. RIH to top of cement

at 1891 meters, displace to SBM.

Report From:

Cyril MacPherson/Bryan MacDougall

For

Barbara Carleton

Forcast: Drill out cement and casing shoe, clean out rat hole and drill 2 m new

formation, conduct FIT, Drill ahead.

May 22, 2002 @ 00:30 Spud Date: Well Name: Chevron et al Newburn H-23

Days from Spud: Location: 13 24.00 K.B. Elevation:

Ground Elevation: -977.00

2,019.00 Depth: Jun 4, 2002 Date: **Progress:** 102.00 2400 hrs Time:

Average R.O.P.: 12.75 8.00 hrs **Rotating Hours:**

Accumulated Cost: \$22,190,871 **Daily Costs:** \$568,111

Formation: Eocene

Operational Status: Drilling 17" hole @ approx 10 m/hr

Operational Summary: Drill out cement, shoe track and casing shoe, clean rat hole and drill 2 meters new hole

to 1919, conduct FIT to 1300 kg/m3. Drill ahead.

Report From: Cyril MacPherson/Bryan MacDougall

Report To: Barbara Carleton Remarks: Forecast: Drill ahead

Lithology Summary

Ground Elevation: -977.00 24.00 **Kelly Bushing Elevation:**

** All Depths measured from Kelly Bushing Elevation **

1,920.00 to 2,020.00

(100.00)

Claystone:gray. silty, amorphous, common glauconite grains, occasional disseminated pyrite, trace carbonaceous flakes, trace sand grains. Contaminated with cement for

first 30 meters.

Morning Report Total Gas Summary

Jun 4, 2002

Storage Units: Metric

Well Name:

Chevron et al Newburn H-23

Date:

Jun 4, 2002

Location:

Time: Depth: 2400 hrs 2,019.00

Report From:

Cyril MacPherson/Bryan MacDougall

Progress:

Report To:

Barbara Carleton

102.00

** All Gas Values are in Percentage **

	Interval Data			as Data	Gas Comments
From	То	Thickness	Minimum	Maximum	
1,917.00	1,938.00	21.00	0.800		
1,938.00	1,973.00	35.00	1.400		
1,973.00	2,019.00	46.00	2.400		

Spud Date: May 22, 2002 @ 00:30 Well Name: Chevron et al Newburn H-23

Location:

Days from Spud: 14 K.B. Elevation: 24.00 **Ground Elevation:** -977.00

Jun 5, 2002 Depth: 2,285.00 Date: **Progress:** 266.00 Time: 2400 hrs

Average R.O.P.: 14.46 **Rotating Hours:** 18.40 hrs

Accumulated Cost: Daily Costs:

Formation: Early Eocene

Operational Status: Drilling

Operational Summary: Drill 177.8 mm hole from 2019 to 2285 meters at midnight. Low rop due to inability of

solids control system to handle the volume of cuttings.

Report From: Cyril MacPherson/Bryan MacDougall

Report To: Barbara Carleton

Remarks: 24 hr Forecast Drill ahead, should intersect top of Paleocene

72 hr Forecast: Continue to drill ahead, through Paleocene and into T20 unconformity

and possibly into Base Tertiary if rop keeps up to approx 300 m/day.

Lithology Summary

Ground Elevation: -977.00 24.00 Kelly Bushing Elevation:

** All Depths measured from Kelly Bushing Elevation **

Claystone: gray, brownish in part, firm, amorphous, blocky in part, trace carbonaceous 2,019.00 to 2,260.00 (241.00)

flakes, silty, rarely marly.

Claystone: gray, gray brown in part, firm, moderately amorphous, blocky in part, silty, 2,260.00 to 2,300.00 (40.00)

trace carbonaceous flakes, minor beige limestone stringers, occasional glauconitic

sandstone laminae.

Morning Report Total Gas Summary

Jun 5, 2002

Storage Units: Metric

Well Name:

Chevron et al Newburn H-23

Date:

Jun 5, 2002

Location:

Time: Depth: 2400 hrs 2,285.00

Report From:

Cyril MacPherson/Bryan MacDougall

Report To:

Barbara Carleton

Progress:

266.00

** All Gas Values are in Percentage **

	Interval Data		Total Gas Data		Gas Comments
From	То	Thickness	Minimum	Maximum	
2,019.00	2,164.00	145.00	2.340	3.840	
2,164.00	2,194.00	30.00	1.640		
2,194.00	2,266.00	72.00	2.670		

Well Name: Chevron et al Newburn H-23

Location:

Spud Date: Days from Spud:

May 22, 2002 @ 00:30 15

K.B. Elevation:

24.00

Ground Elevation:

-977.00

Jun 6, 2002 Date:

Time:

2400 hrs

Depth: Progress: 2,448.00

Rotating Hours:

6.40 hrs

Average R.O.P.:

163.00 25.47

Daily Costs:

Accumulated Cost:

Formation: Early Eocene

Operational Status: Drilling ahead

Operational Summary: Drill to 2320 meters, problem with solids control system, clean up Swaco problems,

circulate the hole and resume drilling, Swaco equipment appears to be working better.

Report From: Cyril MacPherson/Bryan MacDougall

Report To:

Barbara Carleton

Remarks: Forecast: 24 Hour Drill to 2475, circulate and bring mud weight to 10.2 ppg, wiper trip,

RIH and drill ahead. Should encounter Paleocene Lowstand. Forecast 72hr: Drill ahead through Paleocene and into Tertiary

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

2,260.00 to 2,470.00

(210.00)

Claystone: Gray to gray brown and rarely light gray and green, firm yo blocky amorphous in part, slightly silty, common trace glauconite and carbonaceous flakes,

rare trace very fine sandstone.

Morning Report Total Gas Summary

Jun 6, 2002

Storage Units: Metric

Chevron et al Newburn H-23

Date:

Jun 6, 2002

Well Name: Location:

Time: Depth: 2400 hrs 2,448.00

Report From: Cyril MacPherson/Bryan MacDougall

Progress:

163.00

Report To: **Barbara Carleton**

** All Gas Values are in Percentage **

	Interval Data		Total Gas Data		Gas Comments
From	To	Thickness	Minimum	Maximum	
2,266.00	2,302.00	36.00	2.490		Note, gas data lost for 7 meters throught this interval, datalg computer crash.
2,302.00	2,320.00	18.00	0.130		Low gas reading as a result of decreased pump rates due to solids contro; problems
2,320.00	2,433.00	113.00	2.250		

Storage Units: Metric Geological Morning Report Jun 7, 2002

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 00:30

Location: Days from Spud: 16
K.B. Elevation: 24.00
Ground Elevation: -977.00

 Date:
 Jun 7, 2002
 Depth:
 2,547.00

 Time:
 2400 hrs
 Progress:
 99.00

Rotating Hours: 8.00 hrs Average R.O.P.: 12.38

Daily Costs: Accumulated Cost:

Formation: Eocene

Operational Status: Drilling Ahead

Operational Summary: Drill to 2476 meters, circulate hole clean, increase mud meight to 1215 kg/m3, wiper

trip to casing shoe, RIH and drill ahead.

Report From: Cyril MacPherson/Bryan MacDougall

Report To: Barbara Carleton

Remarks: 24hr Forecast: Drill into Paleocene Lowstand today.

72hr Forecast: Continue to drill ahead through Paleocene and intersect the T20 (approx 3030m) unconformity on the 9th, and into the Base Tertiary (approx 3210m)

Lithology Summary

Kelly Bushing Elevation:	24.00	Ground Elevation:	-977.00
	** All Depths measured from	Kelly Bushing Elevation **	
2,470.00 to 2,522.00 (52.00)	Claystone: medium gray, firm t glauconitic sandstone.	o blocky, amorphous in part, rare tra	ace fine grained
2,522.00 to 2,680.00 (158.00)		greenish in part, firm and partly bloc with thin limestone stringers and larr	
	Limestone: 5% beige, mudstor argillaceous in part, trace carb	ne to partly very fine packstone, crur onaceous.	mbly to slightly hard,
2,580.00 to 2,600.00	Claystone: light gray, slightly g	reenish in part, firm and amorphous	, calcareous to

(20.00) marly, trace pyritic.

Storage Units: Metric Morning Report Total Gas Summary

Jun 7, 2002

Well Name:

Chevron et al Newburn H-23

Date:

Jun 7, 2002

Location:

Time: Depth: 2400 hrs 2,547.00

Report From:

Cyril MacPherson/Bryan MacDougall

Progress:

99.00

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

	Interval Data		Total Gas Data		Gas Comments
From	То	Thickness	Minimum	Maximum	
2,433.00	2,476.00	43.00	2.880		
2,476.00	2,508.00	32.00	1.770		
2,508.00	2,518.00	10.00	2.770		
2,518.00	2,538.00	20.00	2.030		

-977.00

May 22, 2002 @ 00:30 Spud Date: Well Name: Chevron et al Newburn H-23

Location:

Days from Spud: 17 K.B. Elevation: 24.00 **Ground Elevation:** -977.00

2.867.00 Depth: Jun 8, 2002 Date: **Progress:** 320.00 Time: 2400 hrs

Average R.O.P.: 13.33 24.00 hrs **Rotating Hours:**

Accumulated Cost: Daily Costs:

Formation: Paleocene

Operational Status: Drilling Ahead

Operational Summary: Drill 431.8mm hole from 2547 to 2867.

Report From: Cyril MacPherson/Bryan MacDougall

Report To: Barbara Carleton

Remarks: 24hr Forecast: Drill into Paleocene T20 Unconformity.

72hr Forecast: Drill on through into Tertiary and most likely to casing point

Lithology Summary

24.00 **Ground Elevation:** Kelly Bushing Elevation: ** All Depths measured from Kelly Bushing Elevation **

Claystone: very light gray to medium gray, gray green, amorphous to subblocky, soft to 2.600.00 to 2.772.00 firm, very calcareous to marly, fine disseminated pyrite, beige limestone stringers, (172.00)

grading to marlstone.

Claystone: 10% light gray to medium gray, amorphous to subblocky, soft to firm, very 2,772.00 to 2,797.00 (25.00)

calcareous, fine disseminated pyrite, grading to marlstone.

Marlstone: 15% very light gray white, soft, amorphous, fine disseminated pyrite and

pyrite laminae.

Limestone: 75% very light greenish gray, soft to firm, brittle, amorphous to subblocky,

mudstone, locally packstone, very fine pyrite laminae, dense, no shows.

Limestone: 100% very light greenish gray to gray white, mudstone, slightly hard, 2.797.00 to 2.847.00

argillaceous to marly, rare claystone stringer. (50.00)

Claystone: 85% medium gray and brown, firm to blocky, silty, calcareous to marly in 2,847.00 to 2,870.00 part, common trace glauconite and pyritic in part. (23.00)

Limestone: 15% light gray green to gray white, firm to slightly hard, argillaceous

mudstone, rarely grading to packstone, interbeds in claystone.

Morning Report Total Gas Summary Storage Units: Metric

Jun 8, 2002

Well Name:

Chevron et al Newburn H-23

Date:

Jun 8, 2002

Location:

Time: Depth: 2400 hrs 2,867.00

Report From:

Cyril MacPherson/Bryan MacDougall

Progress:

320.00

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

	Interval Data		Total Gas Data		Gas Comments
From	То	Thickness	Minimum	Maximum	
2,538.00	2,584.00	46.00	2.180		
2,584.00	2,773.00	189.00	1.650		
2,773.00	2,789.00	16.00	2.820	4.370	Gas Peak at 2780
2,789.00	2,854.00	65.00	1.210		

Well Name: Chevron et al Newburn H-23

Location:

May 22, 2002 @ 00:30 Spud Date: Days from Spud: 18 K.B. Elevation: 24.00 -977.00

Ground Elevation:

Date: Jun 9, 2002 Time: 2400 hrs

Rotating Hours: 14.00 hrs Depth: 3,074.00 207.00

Progress: Average R.O.P.: 14.79

Daily Costs: Accumulated Cost:

Formation: Paleocene T 20 Unconformity

Operational Status: Drilling ahead at 3074 meters

05:30 am Status: Drilling Ahead at 3140 meters.

Drill to 2885 meters, problems with solids handling equipment, resume drilling and drill Operational Summary:

to 3074 meters.

Report From:

Cyril MacPherson Barbara Carleton

Report To: Remarks:

24hr Forecast: Drill through base Tertiary and into Cretaceous.

72hr Forecast: Drill to casing point, clean hole and begin logging with Schlumberger.

Lithology Summary

Kelly Bushing Elevation:	24.00	Ground Elevation:	-977.00
	** All Depths measured from Kelly	Bushing Elevation **	
2,870.00 to 2,875.00 (5.00)	Claystone: 85% medium gray and bropart, common trace glauconite and p		areous to marly in
	Limestone: 15% light gray green to g mudstone, rarely grading to packstor		, argillaceous
2,875.00 to 3,022.00 (147.00)	Claystone: medium gray, firm to part limestone stringers, common trace g locally.		
3,022.00 to 3,060.00 (38.00)	Claystone: 75% medium gray to part grading to argillaceous siltstone, con calcareous to marly.		
	Limestone: 25% beige to tan, crumble flakes.	y, mudstone, common carbor	naceous streaks and
3,060.00 to 3,100.00 (40.00)	Claystone: medium gray, firm and blaggillaceous siltstone, minor beige lir		

Morning Report Gas Summary

Well Name:

Chevron et al Newburn H-23

Date: Time:

Jun 9, 2002

Location:

Depth:

2400 hrs 3,074.00

Report From:

Cyril MacPherson

Progress:

207.00

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

Interval:	From:	2.854.00	to	3,013.00	Thickness:	159.00

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	1.990	1.940	0.040							
Maximum										

Remarks:

Interval:	From:	3.013.00	to	3.034.00	Thickness:	21.00	
milervar.	TIOIII.	3,013.00	w	0,007.00	111101111000.		

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	4.030	3.970	0.060	0.010						
Maximum							ļ			

Remarks:

Interval:	From:	3.034.00	to	3.048.00	Thickness:	14.00
miter var.	1 10111.	0,007.00		0,010.00	, , , , , , , , , , , , , , , , , , , ,	

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	8.940	8.790	0.130	0.010						
Maximum	13.050	12.840	0.018	0.020	0.010					

Remarks: Gas Peak at 3041

Legend	Total Gas = TG	Ethane = C2	Iso Butane = IC4	Iso Pentane = IC5
	Methane = C1	Propane = C3	Normal Butane = NC4	Normal Pentane = NC5
			Total Butane = TC4	Total Pentane = TC5

Morning Report Formation Summary Storage Units: Metric

Jun 9, 2002

Well Name:

Chevron et al Newburn H-23

Date: Time: Jun 9, 2002

Location:

Depth:

2400 3,074.00

Cyril MacPherson

Report From: Report To:

Barbara Carleton

Progress:

207

Kelly Bushing Elevation:

24.00

Casing Flange Elevation:

-973.36

Ground Elevation:

-977.00

Storage Units:

Metric

** All Depths measured from Kelly Bushing Elevation **

Group Formation Member	Prognosed Top	Sample Top (MD)	Sample Top (TVD)	Subsea Elevation	Thickness	Difference From Prognosis
T20 Unconformity	3,038.00	3,022.00	3,021.99	-2,997.99		16.01

Geological Morning Report Jun 10, 2002

Spud Date: May 22, 2002 @ 00:30 Well Name: Chevron et al Newburn H-23

Days from Spud: 19 Location: K.B. Elevation: 24.00 Ground Elevation: -977.00

> 3,376.00 Jun 10, 2002 Depth: Date: 302.00 Progress: Time: 2400 hrs

12.85 Average R.O.P.: **Rotating Hours:** 23.50 hrs

Accumulated Cost: Daily Costs:

Formation: Cretaceous?

Operational Status: Drilling ahead.

Storage Units: Metric

5:30 Status: Drilling at 3341 meters.

Operational Summary: Drill 431.8mm hole from 3074 to 3376 meters, no indication of Base Tertiary

Report From: Cvril MacPherson Report To: Barbara Carleton

Remarks:

24hr Forecast: Drill to 13 5/8 casing point early today, circulate hole clean and POOH

for logaina.

72hr Forecast: Log with Schlumberger.

Lithology Summary

Ground Elevation: -977.00 24.00 **Kelly Bushing Elevation:**

** All Depths measured from Kelly Bushing Elevation **

Claystone: medium gray, firm to blocky in part, rarely platy, calcareous, silty grading 3,100.00 to 3,230.00 locally to and interbedded with argillaceous siltstone, traces of glauconite and pyrite, (130.00)

occasional carbonaceous flakes, commonly with beige limestone stringers and thin

interbeds.

Claystone: medium gray, blocky to platy in part, moderately to weakly calcareous, 3,230.00 to 3,400.00 (170.00)

decreasing carbonate with depth, silty grading to siltstone in part, minor limestone

stringers and thin interbeds.

Morning Report Gas Summary

Jun 10, 2002

Well Name:

Chevron et al Newburn H-23

Date: Time: Jun 10, 2002 2400 hrs

Location:

Depth:

3,376.00

Report From:

Cyril MacPherson

Progress:

Report To:

Barbara Carleton

302.00

** All Gas Values are in Percentage **

Interval:	From:	3,048.00	to	3,103.00	Thickness:	55.00

,	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	5.130	5.030	0.090	0.010						
Maximum	6.800	6.670	0.110	0.020	0.010					

Remarks: Peak Gas at 3069

Interval:	From:	3.103.00	to	3.191.00	Thickness:	88.00
IIILEI VAI.	1 10111.	5, 105.00		0, 10 1.00	11	

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	2.790	2.720	0.060	0.010						
Maximum										

Remarks:

Interval:	From:	3,191.00	to	3,355.00	Thickness:	164.00	

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	1.920	1.860	0.300	0.010						
Maximum										

Remarks:

Legend				
	Total Gas = TG	Ethane = C2	Iso Butane = IC4	Iso Pentane = IC5
ŀ	Methane = C1	Propane = C3	Normal Butane = NC4	Normal Pentane = NC5
		•	Total Butane = TC4	Total Pentane = TC5

Morning Report Formation Summary

Jun 10, 2002

Storage Units: Metric

Well Name:

Chevron et al Newburn H-23

Date: Time: Jun 10, 2002

Location:

Depth:

2400 3,376.00

Report From:

Cyril MacPherson

Report To:

Barbara Carleton

Progress:

302

Casing Flange Elevation:

-973.36

Kelly Bushing Elevation: Ground Elevation:

24.00 -977.00

Storage Units:

Metric

** All Depths measured from Kelly Bushing Elevation **

Group Formation Member	Prognosed Top	Sample Top (MD)	Sample Top (TVD)	Subsea Elevation	Thickness	Difference From Prognosis
T20 Unconformity	3,038.00	3,022.00	3,021.96	-2,997.96		16.04

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 20 K.B. Elevation: 24.00

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jun 11, 2002
 Depth:
 3,515.00

 Time:
 2400 hrs
 Progress:
 139.00

 Rotating Hours:
 11.50 hrs
 Average R.O.P.:
 12.09

Daily Costs: Accumulated Cost:

Formation: Cretaceous?

Operational Status: Tripping out of hole to log

5:30 Status: pulling out of hole at 1060 meters.

Operational Summary: Drill to 3515 meters, circulate hole clean and wiper trip; and circulate the hole clean.

Wiper Trip Gas 4.84%/1.44%/ after 6.25 hrs with pumps off

Report From: Cyril MacPherson Report To: Barbara Carleton

Remarks: 24hr Forecast: Log with Schlumberger, PEX and VSP

72hr Forecast: Complete VSP, run SWC, begin running 13 5/8 casing

Lithology Summary

** All Depths measured from Kelly Bushing Elevation **

3,400.00 to 3,460.00 (60.00)

(60.00)

Claystone: medium gray, firm to blocky, weakly to moderately calcareous, silty grading to argillaceous siltstone interbeds and stringers, trace pyrite and common trace carbonaceous specks, minor limestone stringers.

Claystone: medium gray, firm to blocky and partly platy, calcareous to dolomitic, silty

Claystone: medium gray, firm to blocky and partly platy, calcareous to dolomitic, silty grading to siltstone, minor beige to tan dolomitic limestone stringers, trace pyrite.

(55.00)

Storage Units: Metric

Well Name:

Chevron et al Newburn H-23

Location:

Scotian Shelf

3.310

Date: Time: Jun 11, 2002

2400 hrs 3,515.00

Depth: Progress:

139.00

Report From: Report To:

Cyril MacPherson **Barbara Carleton**

** All Gas Values are in Percentage **

Interval: From: 3,355	00 to	3,410.00	Thickness:	55.00
-----------------------	-------	----------	------------	-------

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	1.880	1.840	0.030	0.010						
Maximum		1								

Remarks:

Interval:	From:	3,410.00	to	3,430.00	Thickness: 20.00		00			
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	2 740	2 680	0.050	0.010						

Maximum Remarks:

Interval:	From:	3,430.00	to C2	3,515.00	Thick					
Т	TG	C1		C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	2.020	1.970	0.040	0.010						
Maximum										

Remarks:

Legend	Total Gas = TG Methane = C1	Ethane = C2 Propane = C3	Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4	Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5
ľ			Total Dutaile - 104	TOTAL TOTAL

Geological Morning Report Jun 12, 2002

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 21

K.B. Elevation: 24.00

Ground Elevation: -977.00

Ground Elevation: -977.00

 Date:
 Jun 12, 2002
 Depth:
 3,515.00

 Time:
 2400 hrs
 Progress:
 0.00

 Rotating Hours:
 0.00 hrs
 Average R.O.P.:
 0.00

Daily Costs: Accumulated Cost:

Formation: Cretaceous?

Operational Status: Rigging up VSP

Storage Units: Metric

5:30 Status: Running VSP

Operational Summary: POOH laying down BHA, rig up Schlumberger aand run in and complete logging run

number 1(DTS-EMS-PEX-AIT) and rig down.

Report From: Cyril MacPherson Report To: Barbara Carleton

Remarks: 24hr Forecast: Complete VSP shots and run SWC.

72hr Forecast: Run casing

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 22

K.B. Elevation: 24.00

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jun 13, 2002
 Depth:
 3,515.00

 Time:
 2400 hrs
 Progress:
 0.00

 Rotating Hours:
 0.00 hrs
 Average R.O.P.:
 0.00

Daily Costs: Accumulated Cost:

Formation: Cretaceous?

Operational Status: Rigging down Schlumberger

05:30 Status: Retrieving wear bushing.

Operational Summary: Complete VSP and run MSCT.

Report From: Cyril MacPherson Report To: Barbara Carleton

Remarks: 24hr Forecast: Retrieve wear bushing, rig up and begin to run casing.

72hr Forecast: Complete running casing, and cement.

Lithology Summary

Kelly Bushing Elevation: 24.00 Groun

Ground Elevation: -977.00

** All Depths measured from Kelly Bushing Elevation **

1944m Core # 25: 4.8 cm Claystone: greenish gray, firm, amorphous, slightly silty.

2030m Core # 24: 5 cm Claystone: gray brown, firm, silty in part.

2104m Core # 1, 5 cm Claystone: gray brown, firm, amorphous in part, slightly, trace carbonaceous.

2157m Core # 23: 5 cm Claystone: brown, firm to blocky.

2199m Core # 22: 5 cm Claystone: brown, firm to blocky.

2230.3m Core # 21 5 cm Claystone: brown, firm and blocky.

2269.5m Core # 20: 5 cm Claystone: brown, firm to blocky.

2323.5m Core # 19: 5 cm Claystone: brown, firm to blocky.

2364m Core # 18: 5 cm Claystone: brown to gray brown. firm.

2413.5m Core # 2: 4 cm Claystone: gray, silty, firm.

2497.3m Core # 17: 5 cm Claystone: brown gray, firm, calcareous, slightly silty, trace pyrite.

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

Ground Elevation:

22 24.00 -977.00

2535m Core # 3: 4.5 cm Claystone: gray to brownish, firm, trace pyrite, cut by fracture.

2635m Core # 16: 5 cm Claystone: brownish gray, firm, calcareous, silty in part, trace pyrite.

2677m Core # 15: 5 cm Claystone: gray, slightly brown, firm, moderately calcareous, trace silty.

2759m Core # 14: 4.5 cm Claystone: gray, firm to dense, calcareous, fractured.

2815m Core # 13: 4.8 cm Marlstone: very light grayish green, dense, common carbonaceous specks.

2858m Core # 12: 4.5 cm Claystone: light gray green, blocky, calcareous, cut by a fracture.

2883m Core # 11: 5 cm Marlstone: light gray greenish, dense, common carbonaceous flakes.

2903m Core # 10: 4.5 cm Claystone: medium gray, dark gray in part, dense, blocky, trace pyrite, cut by a fracture.

3004m Core # 9: 5 cm Marlstone: green gray, argillaceous, blocky, modly hd, rrly slty.

3033m Core # 4; 5 cm Claystone: gray, firm, moderately well indurated, calcareous, silty in part, minor beige argillaceous limestone nodule or inclusions.

3139m Core # 8: 5 cm Claystone; medium gray, brownish in part, firm to blocky, slightly silty, calcite to locally marly, trace thin marly laminae.

3236m Core # 7: 5 cm Claystone: medium gray, brownish in part, firm to blocky, slightly silty, calcite to locally marly, trace thin marly laminae.

3373m Core # 6: 5 cm Claystone: medium to dark gray, blocky, dense, rarely silty, weakly calcareous.

3481m Core # 5: 5 cm Claystone: gray, moderately hard, slightly silty, wlkly calcareous, cut by brownish calcareous laminae.

Geological Morning Report Jun 17, 2002 Storage Units: Metric

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 26 K.B. Elevation: 24.00

Ground Elevation: -977.00 Depth: 3,515.00 Jun 17, 2002

0.00 Time: 2400 hrs **Progress: Rotating Hours:** 0.00 hrs Average R.O.P.: 0.00

Accumulated Cost: Daily Costs:

Formation: Cretaceous

Operational Status: Running in hole.

Date:

5:30 am Status: Drilling Cement

Operational Summary: Pressure test casing, make up BHA and RIH.

Report From: Cyril MacPherson Report To: Barbara Carleton

Remarks:

24hr Forecast: Drill out cement and casing shoe, perform FIT, drill ahead.

72hr Forecast: Drill ahead.

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date: May 22, 2002 @ 12:30
Days from Spud: 27

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jun 18, 2002
 Depth:
 3,620.00

 Time:
 2400 hrs
 Progress:
 105.00

 Rotating Hours:
 9.00 hrs
 Average R.O.P.:
 11.67

Daily Costs: Accumulated Cost:

Formation: Cretaceous?

Operational Status: Drilling ahead

5:30 Status: Drilling ahead

Operational Summary: RIH to top of cement, drill out cement and shoe, clean out rat hole and conduct FIT to

1620kg/m3 EMW. Drill ahead 311 mm hole.

Report From: Cyril MacPherson Report To: Darcy Deibert

Remarks:

24hr Forecast: Drill 311mm hole through Cenomanian Unconformity and into Albian.

72hr Forecast: Drill through Sequence D and to kick off point.

Lithology Summary

Kelly Bushing Elevation: 24.00 Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

3,515.00 to 3,690.00 (175.00)

Claystone: medium gray, firm to blocky in part, partly dolomitic, silty with minor siltstone stringers, common carbonaceous specks with minor dolomite stringers and thin

stringers, common carbonaceous specks with minor dolomite stringers and thin

laminae.

Dolomite: tan to light brown in part, mudstone to cryptocrystalline in part, brittle to locally moderately hard and dense, commonly argillaceous grading to marlstone in

part, common carbonaceous flakes and streaks

Morning Report Gas Summary

Jun 18, 2002

Storage Units: Metric

Well Name: Location:

Chevron et al Newburn H-23

Scotian Shelf

Date: Time: Jun 18, 2002

Depth:

2400 hrs 3,620.00

Report From:

Cyril MacPherson

Report To:

Darcy Deibert

Progress:

105.00

** All Gas Values are in Percentage **

Thickness: 105.00 3,620.00 Interval: From: 3,515.00 to

							TOA	105	NOC	TCS
	TG	C1	C2	C3	IC4	NC4	1C4	105	NC5	105
Minimum	0.310	0.300								
Maximum										

Remarks:

Legend

Total Gas = TG Methane = C1

Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4

Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

28 24.00

Ground Elevation:

-977.00

Date: Jun 19, 2002

Time: **Rotating Hours:** 2400 hrs

Depth: **Progress:** 4.042.00 422.00

21.50 hrs

Average R.O.P.:

19.63

Daily Costs:

Accumulated Cost:

Formation: Cretaceous

Operational Status: Drilling ahead

5:30am Status: Circulating at 4053 meters after wiper trip.

Operational Summary: Drill 311 mm hole from 3620 to 4042 meters.

Report From: Cyril MacPherson Report To: Darcy Deibert

Remarks: 24hr Forecast: Drill to approx 4200 meters and begin kick off.

72hr Forecast: Drill ahead in deviated hole section.

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

3,690.00 to 3,985.00

(295.00)

Claystone: >95% medium gray, predominately firm to blocky in part, rarely platy, silty grading to and interbedded with siltstone, generally dolomitic, minor to common thin dolomite stringers and interbeds, common carbonaceous specks, locally slightly pyritic,

Dolomite: <5% tan to beige and rarely brown, generally mudstone with minor to frequent cryptocrystalline fragments and stringers, argillaceous locally becoming

marlstone, occasional trace of pyrite.

3,985.00 to 4,050.00 (65.00)

Claystone: brownish gray, firm and blocky in part, slightly calcareous, silty, occasional brown calcareous marlstone, minor white calcareous siltstone interbeds, occasional

trace pyrite.

Jun 19, 2002

Well Name:

Storage Units: Metric

Chevron et al Newburn H-23

3,620.00

Date:

Jun 19, 2002

Location:

Scotian Shelf

Time: Depth: 2400 hrs 4,042.00

Report From:

Cyril MacPherson

Progress:

422.00

Report To:

Darcy Deibert

** All Gas Values are in Percentage **

Interval:

From:

4,020.00

Thickness: 400.00

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.470	0.460								
Maximum										

Remarks: Connection Gas: 3853: 20/50/5 min

3968: 18/50/7min 3997: 28/54/7min

Legend

Total Gas = TG

Ethane = C2

Iso Butane = IC4 Normal Butane = NC4 Iso Pentane = IC5

Methane = C1

Propane = C3

Total Butane = TC4

Normal Pentane = NC5

Total Pentane = TC5

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

May 22, 2002 @ 12:30 Spud Date:

4,309.00

Days from Spud: 29 K.B. Elevation: 24.00

Ground Elevation: -977.00

Jun 20, 2002 Date:

Time: **Rotating Hours:**

2400 hrs 16.00 hrs

Depth: Progress:

267.00 Average R.O.P.: 16.69

Accumulated Cost: Daily Costs:

Formation: Cretaceous.

Operational Status: Drilling ahead

5:30 Status: Circulating out gas, after gas peak to 20%.

Operational Summary: Wiper trip and bring MW up to 11.5 ppg, drill ahead.

Report From: Cyril MacPherson Report To: Darcy Deibert

Remarks: 24hr Forecsat: Increase Mud Wt and drill ahead

72hr Forecast: Drill ahead, keeping MW above expected pore pressure, possibly

drilling to next casing point.

NOTE: Gas Values reported in %

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

3,985.00 to 4,070.00 (85.00)

Claystone: medium gray, partly brownish, rare light gray, firm to blocky, very slightly calcareous, silty grading to siltstone in part, minor brown argillaceous limestone stringers partly dolomitic.

4,070.00 to 4,270.00 (200.00)

Claystone: brown, grayish in part, firm to blocky, slightly calcareous, silty grading to siltstone, common carbonaceous flakes, occasional gray white calcareous siltstone stringers,

4,270.00 to 4,310.00 (40.00)

Claystone: 70% brown, grayish in part, firm to blocky, slightly calcareous, silty grading to siltstone, common carbonaceous flakes, minor gray white calcareous siltstone stringer

Claystone: 15% off white to grayish white, partly brown, soft and amorphous, silty and rarely sandy, locally becoming chalky limestone, occasional dead oil with dull gold fluorescence and no cut.

Limestone: 15% off white, gravish white, chalky, soft to crumbly, argillaceous, trace carbonaceous flakes, with trace glauconite, commonly interbedded with a silty white clay laminae.

Well Name:

Chevron et al Newburn H-23

Location:

Scotian Shelf

Date: Time:

Jun 20, 2002

Depth:

2400 hrs 4,309.00

IC5

IC5

Report From:

Cyril MacPherson

Progress:

267.00

NC5

NC5

TC5

TC5

Report To:

Darcy Deibert

** All Gas Values are in Percentage **

IC4

Interval:

From:

4,020.00 to

C2

Thickness: 84.00

TC4

TG

0.450

Remarks: Connection Gas: 4111 m

<u>C1</u>

0.440

4,104.00

NC4

Minimum Maximum

0.750 0.740

1.05/0.76/5min

<u>C3</u>

4160 m

0.97/0.80/5min 1.16/0.90/10min

4167 m 4197 m

1.27/0.97/5min

Interval:

From:

4,104.00

to

C2

4,290.00

Thickness:

NC4

IC4

186.00

TC4

TG <u>C1</u> Minimum 0.800 0.790 0.099 Maximum

1.000

Remarks: Connection Gas: 4226 m

1.28/0.98/5min

C3

4254 m

1.28/1.03/5min

42.8 m

1.18/1.00/5min

4197 m

1.27/0.97/5min

Legend

Total Gas = TG Methane = C1

Ethane = C2 Propane = C3 Iso Butane = IC4

Normal Butane = NC4 Total Butane = TC4

Iso Pentane = IC5 Normal Pentane = NC5

Total Pentane = TC5

Chevron Canada Resources UM Newburn H-23

May 22, 2002 @ 12:30

Jun 20, 2002

Spud Date: Days from Spud:

29

K.B. Elevation: **Ground Elevation:**

24.00 -977.00

4,310.00 to 4,320.00 (10.00)

Location: Scotian Shelf

Storage Units: Metric

Well Name: Chevron et al Newburn H-23

Sandstone: off white, partly buff, fine grained, occasional medium grains, subrounded, generally well sorted, unconsolidated in sample, white limestone and partly argillaceous matrix, occasional dead oil stain with dull yellow fluorescence and very slight weak white cut, common limestone interbeds.

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date: Days from Spud:

May 22, 2002 @ 12:30

K.B. Elevation:

30 24.00

Ground Elevation:

-977.00

Date: Jun 21, 2002

Time: 2400 hrs

Depth: Progress: 4.366.00 57.00

Rotating Hours: 0.00 hrs Average R.O.P.:

0.00

Daily Costs:

Accumulated Cost:

Formation: Cretaceous

Operational Status: Building Mud Weight to 1476kg/m3

5:30 Status: Circulating after short wiper trip.

Operational Summary: Drill to 4366 meters, gas readings increasing, circulate, gas up to 20%, increase mud

weight to 1368kg/m3 then 1428kg/m3, background gas 5%. Still getting high pumps off

gas, raise MW to 1476kg/m3 ppg.

Report To:

Report From: Cyril MacPherson **Darcy Deibert**

Remarks: 24hr Forecast: Get gas under control and drill ahead.

72hr Forecast: Drill to next casing point

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

4,320.00 to 4,326.00

(6.00)

Sandstone: off white, partly buff, fine grained, occasional medium grains, subrounded, generally well sorted, unconsolidated in sample, white limestone and partly argillaceous matrix, occasional dead oil stain with dull yellow fluorescence and very slight weak

white cut, common limestone interbeds.

Limestone: off white, light brownish in part, chalky and crumbly, sandy and silty, grading to calcareous sandstone in part, trace glauconite, argillaceous and becoming

marly, minor gray claystone laminae.

limestone stringers.

4,326.00 to 4,346.00 (20.00)

Claystone: gray brown, blocky, calcareous, silty, trace carbonaceous flakes.

4,346.00 to 4,357.00 (11.00)

Limestone: off white, grayish white in part, soft to crumbly, chalky, partly argillaceous, silty and sandy in part, trace carbonaceous material.

4,357.00 to 4,366.00

Claystone: medium gray, gray brown, blocky, silty, calcareous, occasional thin white

(9.00)

Well Name: Location:

Chevron et al Newburn H-23

Scotian Shelf

Date: Time: Jun 21, 2002

Depth:

2400 hrs 4,366.00

Report From:

Cyril MacPherson

Progress:

Darcy Deibert

57.00

Report To:

** All Gas Values are in Percentage **

Interval:	From:	4,290.00	to	4,366.00	Thick	ness: 76.	00			
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.980	0.940								
Maximum	13.000	12.800	0.300	0.100						

Remarks: Connection Gases: 4308: 1.42/1.20/4min _ 4338: 2.40/2.00/6min

Pumps off Gases: 4356: 21.12/11.30/6min _ 4366: 30.00/13.0/16min

Legend

Total Gas = TG Methane = C1

Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4

Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 31

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jun 22, 2002
 Depth:
 4,418.00

 Time:
 2400 hrs
 Progress:
 52.00

 Rotating Hours:
 5.50 hrs
 Average R.O.P.:
 9.45

Daily Costs: Accumulated Cost:

Formation: Cretaceous

Operational Status: Drilling

5:30 Status: POOH for wiper trip.

Operational Summary: Build mud weight to 1500kg/m3, short wiper trip, 12.6% gas from bottoms up, drill 20

meters, simulated connection with resulting gas of 2.33%, drill ahead slowly to 4418.5 meters, resistivity trend decreasing, indicating increasing pore pressure, estimated to

be 1476kg/m3.

Stopped drilling for casing due to icreasing pore pressure.

Report From: Cyril MacPherson Report To: Darcy Deibert

Remarks:

24hr Forecast: Wiper trip to Casing shoe, RIH and circulate clean, POOH to log.

72hr Forecast: Log with Schlumberger

Lithology Summary

Kelly Bushing Elevation: 24.00 Ground Elevation: -977.00

** All Depths measured from Kelly Bushing Elevation **

4,366.00 to 4,418.00 (52.00)

Claystone: medium gray, blocky to platy and slightly elongated, calcareous, silty with local siltstone stringers, trace carbonaceous flakes, minor marlstone and limestone

stringers, occasionally pyritic and glauconitic locally.

Jun 22, 2002

Storage Units: Metric

Well Name: Location:

Chevron et al Newburn H-23

Scotian Shelf

Date: Time: Jun 22, 2002

2400 hrs

Depth:

4,418.00

Report From:

Cyril MacPherson

Progress:

52.00

Report To:

Darcy Deibert

** All Gas Values are in Percentage **

Interval:	From:	4,367.00	to	4,410.00	Thick	ness: 43.	00			
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.520	0.450								
Maximum	1.090	0 990								

Remarks: Wipertrip gas @ 4366: 12.61/1.88/60min

Simulated Conn Gas; 4366 7.94/4.66/18min

4376 2.68/0.94/8min 4386 2.33/0.86/8min 4396 3.44/1.08/5min

Legend				
	Total Gas = TG	Ethane = C2	Iso Butane = IC4	Iso Pentane = IC5
	Methane = C1	Propane = C3	Normal Butane = NC4	Normal Pentane = NC5
		•	Total Butane = TC4	Total Pentane = TC5

Geological Morning Report Jun 23, 2002

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 32 K.B. Elevation: 24.00

Ground Elevation: -977.00

4,418.50 Jun 23, 2002 Depth: Date: Time: 2400 hrs Progress: 0.50 **Rotating Hours:** 0.00 hrs Average R.O.P.: 0.00

Accumulated Cost: Daily Costs:

Formation: Cretaceous

Storage Units: Metric

Operational Status: Circulating after wiper trip to the shoe.

5:30 Status: POOH to log.

Operational Summary: Circulate and condition mud, doing a number of simulated connections and short trips

in order to get the gas entering the well down low enough to safely POOH to log.

Simulated Connections at 4411 = 1.64%/.47%/5min

4418 = 1.82/.62/5min

4418 = 6.42/1.14/140min Wiper Trips at

4417 = 8.52/1.65/120min

Report From: Cyril MacPherson Report To: **Darcy Deibert**

Remarks:

24hr Forecast: POOH and begin logging.

72hr Forecast: Complete logging and begin running casing.

Jun 24, 2002 Spud Date:

Location: Scotian Shelf Days from Spud: 33 K.B. Elevation: 24.00 **Ground Elevation:** -977.00

> Date: Jun 24, 2002 Depth: 4,418.50 Time: 2400 hrs Progress: 0.00 0.00 hrs 0.00

Rotating Hours: Average R.O.P.:

Daily Costs: Accumulated Cost:

Formation: Sequence C?

Well Name: Chevron et al Newburn H-23

Storage Units: Metric

Operational Status: Running in hole with Schlumberger for first logging run.

EMS-DTS-DSI-PEX-AIT-GR

5:30 Status: Logging in casing to find corelation with 17 " logs.

Operational Summary: Circulate bottoms up from wiper trip to shoe, and trip out off hole to log. Rig up

Schlumberger.

Report From: Cyril MacPherson Report To: **Darcy Deibert**

> Remarks: 24hr: Forecast; Run MDT, wiper trip.

> > 72hr Forecast: Complete wiper trip and complete logging

May 22, 2002 @ 12:30

Storage Units: Metric

Jun 25, 2002

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date: Days from Spud: May 22, 2002 @ 12:30 34

K.B. Elevation:

24.00

Ground Elevation:

-977.00

Date:

Jun 25, 2002

Depth: Progress: 4.418.50

Time: **Rotating Hours:**

2400 hrs 0.00 hrs

Average R.O.P.:

0.00 0.00

Daily Costs:

Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 status: POOH with logging tools (Run 3; OBMI)

05:30 Status: RIH for wiper / hole conditioning trip.

Operational Summary:

Complete 1st logging Run

EMS-DTS-DSI-PEX-AIT-GR

RIH & complete 2nd Run, (MDT) attempt 12 pressure points, no success, indications of

fractured formation.

RIH w/ 3 rd Run (OBMI)

Report From:

Bryan Mac Dougall Barbara Carleton

Report To: Remarks:

24hr: Forecast: Complete Logging Run 3, wiper trip

72hr Forecast: Complete wiper trip and complete logging, prepare to run casing

Storage Units: Metric

Geological Morning Report

Jun 26, 2002

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

24.00

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

Ground

-977.00

hrs

Elevation:

Date:

Time: 2400

Jun 26, 2002 0.00

Progress: **Rotating Hours:**

Depth:4,418.50

hrs

Average R.O.P.:

Daily Costs:

Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 status: Pumping out of hole

05:30 Status: Pulling out of hole

Operational Summary: Finish logging Run #3 (OBMI), R/D Schlumberger, M/U BHA, RIH for conditioning trip, break circ. every 15 stds on trip in, safety wash last 10 stds to bottom, circulate hole,

condition mud, spot heavy pill on bottom, pump out of hole.

Max gas = 42.5 %

Background after circulating = 2.5%

Report Bryan Mac Dougall

From:

Barbara Carleton

24 hr. forecast: Sidewall coring run, retrieve wear bushing.

72 hr. forecast: Run & cement 9 7/8" casing

Geological Morning Report Jun 27, 2002

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 36

K.B. Elevation: 24.00

K.B. Elevation: 24.00
Ground Elevation: -977.00

 Date:
 Jun 27, 2002
 Depth:
 4,418.50

 Time:
 2400 hrs
 Progress:
 0.00

 Hours:
 0.00 hrs
 Average R.O.P.:
 0.00

Rotating Hours: 0.00 hrs Average R.O.P.: 0.0

Daily Costs: Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 status: RIH to retrieve wear bushing

05:30 Status: R/U to run 9 7/8" casing

Operational Summary: POOH, R/U Schlumberger, cut rotary sidewall cores, attempt 24 cores, recover 24

cores, R/D Schlumberger, RIH to retrieve wear bushing

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

Storage Units: Metric

24 hr forecast: Run casing

72 hr forecast: run casing, cement same, prepare to drill next hole section.

Sidewall Core Descriptions

Core #1 4277.7m (5cm)

Claystone: brown gray, firm, slightly calcareous, silty, fracture along long axis of the core.

Core #2 4233.4m (3cm)

<u>Claystone:</u> dark gray brown, firm, slightly calcareous, very silty, fine carbonaceous specs, fracture along long axis of the core.

Core #3 4112.8m (5 cm)

<u>Claystone:</u> dark gray brown, firm, very slightly calcareous, silty, quartz and orange feldspar grains, fine disseminated pyrite, exhibits conchoidal fracture.

Core #4 4043.2m (4.5cm)

Claystone: dark gray brown, firm, very slightly calcareous, silty, fine carbonaceous specks.

Core #5 3989m (3.5cm) (fractured)

Claystone: medium gray, firm, silty, dolomitic, fine carbonaceous specks.

Core #6 4317.5m (4.5cm)

<u>Conglomeratic Sandstone:</u> varicoloured gray, firm to hard, fine to pebble size grains, poorly sorted, fine grained matrix, calcareous cement, trace carbonaceous micro-laminations, patchy good – very good visible porosity, no show.

Core #7 4362.3m (3.5cm)

Claystone: dark gray black, firm, slightly calcareous, silty in part, fracture along long axis of the core.

Core #8 4353.5m (4.5cm)

<u>Sandstone:</u> gray, firm to hard, very fine to fine grained, well sorted, subrounded, quartz grains, trace feldspar and glauconite, well cemented with calcareous cement or matrix, patchy fair visible porosity, no shows.

Core #9 4390.0m (4cm)

<u>Claystone:</u> dark gray to gray black, firm, slightly calcareous, silty in part, trace disseminated and nodular pyrite, fracture along long axis of core.

Core #10 4354.5m (5cm)

<u>Sandstone:</u> light gray, firm to hard, quartz grains, trace glauconite and feldspar grains, fine grained, well sorted, subrounded grains, well cemented with a calcite cement, patchy fair visible porosity, no show; shale and carbonaceous micro laminations along the long axis of the core.

Core #11 4349.7m (5cm)

<u>Sandstone:</u> light gray, firm to hard, quartz grains, trace glauconite and feldspar grains, fine grained, well sorted, subrounded grains, well cemented with calcite cement, patchy fair visible porosity, no show.

Core #12 4325.5m (5cm)

Claystone with sandy laminations / sections: dark gray, firm, slightly calcareous, local fine to medium subrounded to subangular quartz grains, patchy poor visible porosity where sandy.

Core #13 4323m (5cm)

<u>Pebble conglomerate:</u> varicoloured, pebble size (chert, clastics, carbonates) in a strongly calcareous very fine sand matrix, patchy visible porosity in the matrix, no show.

Core #14 4319.8m (4 cm)

<u>Conglomeratic sandstone:</u> light gray, very fine to very coarse grained, quartz grains, minor lithic fragments, subrounded to subangular, well cemented with a strongly calcareous matrix or cement, patchy very poor visible porosity, no show.

Core #15 4318.5m (4.5cm)

<u>Sandstone:</u> gray, firm becoming friable, fine to medium quartz grains, poorly sorted, subrounded to subangular, weakly cemented with calcareous cement, patchy visible porosity (it may be better than observed as the sample was covered on the surface with the residue of drilling mud); carbonaceous shale micro-laminations along the long axis of the core.

Core #16 4313.5m (5cm)

<u>Sandstone:</u> gray, firm becoming friable, very fine to fine quartz grains, poorly sorted, subrounded to subangular, weakly cemented with calcareous cement, patchy visible porosity (it may be better than observed as the sample was covered on the surface with the residue of drilling mud); carbonaceous shale micro-laminations along the long axis of the core.

Core #17 4312.8m (5cm)

<u>Sandstone:</u> light gray, firm to hard, very fine to fine grained quartz, well sorted, subrounded to subangular grains, well cemented with a very strong calcareous cement, no visible porosity, no show; trace carbonaceous microlaminations.

Core #18 4307.8m (5cm)

<u>Claystone:</u> medium to dark gray, soft to firm, very slightly calcareous, silty, trace carbonaceous specks, and micro-laminations.

Core #19 3973.5m (5cm) (fracture along long axis of core)

Claystone: dark gray black, firm, very slightly calcareous, silty, trace carbonaceous specks.

Core #20 3942.0m (4cm)

Claystone: dark gray black, firm, slightly calcareous.

Core #21 3906.5m (4.5cm)

Claystone: dark gray black, firm, slightly calcareous.

Core #22 3808.9m (4cm)

Claystone: dark gray black, firm, slightly calcareous, it has one beige marly section.

Core #23 3743.0m (5cm)

Claystone: dark gray black, firm, slightly calcareous.

Core #24 3701.0m (3.5cm) (broken up)

Claystone: dark gray black, firm, slightly calcareous.

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 37

K.B. Elevation: 24.00

Ground Elevation: -977.00

 Date:
 Jun 28, 2002
 Depth:
 4,418.50

 Time:
 2400 hrs
 Progress:
 0.00

Rotating Hours: 0.00 hrs Average R.O.P.: 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 status: Running 9 7/8" casing.

05:30 Status: Running 9 7/8" casing.

Operational Summary: Retrieve wear bushing, R/U to run casing, Run casing

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr forecast = continue to run casing, cement same.

72 hr forecast = Drill ahead

Jun 29, 2002

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Storage Units: Metric

Spud Date: May 22, 2002 @ 12:30 Days from Spud: 38

K.B. Elevation: 24.00 Ground Elevation: -977.00

Date: Time: Jun 29, 2002

2400 hrs

Depth:

4,418.50

Rotating Hours:

0.00 hrs

Progress: Average R.O.P.: 0.00 0.00

Daily Costs:

Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 status: Cementing 9 7/8" casing.

05:30 Status: Running wear bushing

Operational Summary: Run 9 7/8" casing, circulate hole (Max Gas = 57.7%), cement casing

Report From: Bryan Mac Dougall Barbara Carleton

Report To: Remarks:

24 hr forecast: Test BOP, M/U new BHA, RIH,

72 hr forecast: Drill Ahead

Storage Units: Metric Geological Morning Report

Jun 30, 2002

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 39

K.B. Elevation: 24.00

Ground Elevation: 24.00

-977.00

 Date:
 Jun 30, 2002
 Depth:
 4,418.50

 Time:
 2400 hrs
 Progress:
 0.00

 Rotating Hours:
 0.00 hrs
 Average R.O.P.:
 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 status: Testing casing

-

Operational Summary: Test BOP's, Test Casing

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Drill ahead 72 hr. forecast: Drill ahead

05:30 Status: M/U BHA

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud:

K.B. Elevation:

24.00

Ground Elevation:

-977.00

 Date:
 Jul 1, 2002
 Depth:
 4,418.50

 Time:
 2400 hrs
 Progress:
 0.00

 Rotating Hours:
 0.00 hrs
 Average R.O.P.:
 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 status: Drilling Cement

05:30 Status: POOH @ 4299m to check bit condition

Operational Summary: POOW w/ test tool, test casing, M/U BHA, RIH, tag cement @ 4273m, drill cement

(slow ROP, cannot get constant ROP or torque)

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

Storage Units: Metric

24 hr. forecast: POOH, check bit, RIH,

72 hr. forecast: Drill ahead.

Average gas while drilling cement = 30 u (Canadian)

LWD/MWD Sensor Offsets:

Res: = 8.54 GR: = 8.62 Dir: = 16.18 Sonic: = 24.57 Jul 1, 2002

Storage Units: Metric

Jul 2, 2002

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

41 24.00

Ground Elevation:

-977.00

Date:

Jul 2, 2002

2400 hrs

Depth: Progress:

4,418.50

Time: Rotating Hours:

0.00 hrs

Average R.O.P.:

0.00 0.00

Daily Costs:

Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 hrs: Working on top drive hydraulic seal

05:30 hrs: Working on top drive hydraulic seal

Operational Summary: POOH, change bit, check Powerdrive & LWD/MWD package, RIH to 4121m (top drive

problem)

Report From: Bryan Mac Dougall **Barbara Carleton**

Report To: Remarks:

24 hr. forecast: RIH, drill cement, shoe, 3m new formation, perform FIT to 15.5 ppg,

increase MW to 13.0 ppg, drill ahead

72 hr. forecast: Drill ahead.

LWD/MWD Sensor Offsets:

Res: = 8.54 GR: = 8.62 Dir: = 16.18 Sonic: = 24.57

Storage Units: Metric

Location: Scotian Shelf Days from Spud: 42 K.B. Elevation: 24.00

Ground Elevation: -977.00

Spud Date:

Jul 3, 2002

May 22, 2002 @ 12:30

4,421.00 Date: Jul 3, 2002 Depth: Time: 2400 hrs Progress: 3.0 **Rotating Hours:** 0.50 hrs Average R.O.P.: 3.0

Daily Costs: Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 hrs.: C & CM prior to performind FIT.

05:30 hrs: Increasing MW to 13.0 ppg prior to drilling ahead.

Operational Summary: Repair rig, RIH 4299m, drill cement & float equipment, claen rat hole to 4418m, drill to

4421m, circulate & condition mud

Report From: Bryan Mac Dougall **Barbara Carleton** Report To:

Remarks:

Well Name: Chevron et al Newburn H-23

FIT = 15.5 ppgMax Gas = 38u (Cdn)

24 hr. forecast: Drill ahead.

72 hr. forecast: Drill ahead.

LWD/MWD Sensor Offsets:

Res: = 8.54 GR: = 8.62 Dir: = 16.18 Sonic: = 24.57

Geological Morning Report Storage Units: Metric

Jul 4, 2002

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30 43

Days from Spud: K.B. Elevation:

24.00 -977.00

Date: Time:

Jul 4, 2002 2400 hrs

Depth: Progress: 4,424.00 3.00

Rotating Hours:

1.50 hrs

Average R.O.P.:

Ground Elevation:

2.00

Daily Costs:

Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 hrs.: RIH

05:30 hrs: break circulation, attempting to get LWD/MWD working

Operational Summary: Circulate hole clean, perform FIT, circulate & raise MW to 13.0 ppg, drill to 4424m, POOH, change bit, check PowerDrive & LWD/MWD package, RIH, Slip/Cut line, RIH

Report From: Report To:

Bryan Mac Dougall Barbara Carleton

Remarks:

24 hr. forecast: Drill ahead. 72 hr. forecast: Drill ahead.

LWD/MWD Sensor Offsets:

Res: = 8.55 GR: = 8.63 Dir: = 16.20Sonic: = 24.57 Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud:

44

K.B. Elevation: 24.00 Ground Elevation: -977.00

Date: Jul 5, 2002 Depth: 4,441.00 Time: 2400 hrs Progress: 17.00

Rotating Hours: 1.40 hrs Average R.O.P.: 12.14

Daily Costs: Accumulated Cost:

Formation: Sequence C?

Operational Status: 00:00 hrs: RIH

05:30 hrs: RIH

Operational Summary: RIH, attempt to get MWD/LWD started, drill to 4421m, POOH, C/O LWD/MWD &

Powerdrive, RIH

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Drill ahead. 72 hr. forecast: Drill ahead.

LWD/MWD Sensor Offsets:

Res: = 8.55 GR: = 8.63 Dir: = 16.20 Sonic: = 24.57

Lithology Summary

Kelly Bushing Elevation: 24.00 Ground Elevation: -977.00

** All Depths measured from Kelly Bushing Elevation **

4,424.00 to 4,441.00 Silty claystone: medium gray to gray brown, firm, subblocky, coarse silt size quartz grains, calcareous, argillaceous, carbonaceous specks and laminations with pyrite,

minor calcite stringers and marlstone stringers, grading to siltstone.

Storage Units: Metric

Well Name: Chevron et al Newburn H-23

Location: **Scotian Shelf**

Date: Time: Jul 5, 2002

Depth:

2400 hrs 4,441.00

Report From:

Bryan Mac Dougall

Progress:

Jul 5, 2002

Report To:

Barbara Carleton

17.00

** All Gas Values are in Percentage **

Thickness: 16.00 interval: 4,441.00 From: 4,425.00 to

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.180	0.170								
Maximum	0.300	0.280								

Remarks: No trip gas observed.

Legend

Total Gas = TG Methane = C1

Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4

Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5

4,603.00

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Date:

Days from Spud: 45 K.B. Elevation: 24.00

Depth:

Ground Elevation: -977.00

Jul 6, 2002 **Progress:** 162.00 Time: 2400 hrs Average R.O.P.: 15.88 10.20 hrs **Rotating Hours:**

Daily Costs: Accumulated Cost:

Formation: Upper Sequence B?

Operational Status: 00:00 hrs.: Drill ahead

05:30 hrs.: Drill ahead.

Operational Summary: RIH, wash from 4404 - 4441, drill ahead.

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Drill ahead, looking for core point. 72 hr. forecast: Drill ahead, looking for core point

LWD/MWD Sensor Offsets:

Res: = 8.55 GR: = 8.63 Dir: = 16.20Sonic: = 24.57

Lithology Summary

Kelly Bushing Elevation: 24.00 **Ground Elevation:**

** All Depths measured from Kelly Bushing Elevation **

4,441.00 to 4,555.00 (114.00)

Claystone: medium to dark gray, firm, subblocky, calcareous, locally very silty, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to shale.

4,555.00 to 4,600.00 (45.00)

Shale: medium to dark gray brown, firm, brittle, subblocky, calcareous, trace fine disseminated pyrite, minor trace very fine carbonaceous specks, trace beige limestone stringers, trace crystalline calcite vienlets.

The section from 4555 seems to be more indurated and less silty than the section from 4441 - 4555. Most changes however are very subtle and gradational.

-977.00

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 46
K.B. Elevation: 24.00

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jul 7, 2002
 Depth:
 4,938.00

 Time:
 2400 hrs
 Progress:
 335.00

 Rotating Hours:
 16.40 hrs
 Average R.O.P.:
 20.43

Daily Costs: Accumulated Cost:

Formation: Sequence B?

Operational Status: 00:00 hrs: Drill ahead

05:50 hrs.: Drill ahead

Operational Summary: Drill ahead, function test BOP, drill ahead.

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Drill ahead, looking for core point. 72 hr. forecast: Drill ahead, looking for core point

LWD/MWD Sensor Offsets:

Res: = 8.55 GR: = 8.63 Dir: = 16.20 Sonic: = 24.57

Circulated 1 hr for samples @ 4450m

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

4,600.00 to 4,940.00 (340.00)

Predominately Shale: light - dark gray to gray brown, trace green, firm to moderately hard, brittle, subblocky, calcareous, locally silty or with silty laminations, very fine carbonaceous specks and very fine disseminated pyrite, trace brown limestone stringers, trace white very calcareous sandy stringers, trace loose pyrite, trace crystalline calcite stringers or vienlets.

There were a few traces of sandstone.

light gray, friable, clear and frosted white quartz grains, very fine to fine grained, well sorted, subrounded, calcareous cement, argillaceous matrix, poor - no visible porosity, no shows.

Storage Units: Metric

Well Name:

Chevron et al Newburn H-23

Location:

Scotian Shelf

Date: Time: Jul 7, 2002 2400 hrs

Depth:

4,938.00

Report From:

Bryan Mac Dougall

Progress:

335.00

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

Interval:	From:	4,587.00	to	4,690.00	Thickness:	103.00
Interval:	From:	4,587.00	to	4,690.00	Thickness:	103.00

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.310	0.300								
Maximum	0.750	0.740	0.100							

Remarks:

11161 481. 1 10111. 4,000:00 to 4,100:00 11161	interval:	From:	4,690.00	to	4,763.00	Thickness:	73.00
--	-----------	-------	----------	----	----------	------------	-------

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.710	0.700	0.200							
Maximum	2.100	2.000	0.400	0.100	0.100					

Remarks:

Interval:	From:	4.763.00	to	4.857.00	Thickness:	94.00	

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.660	0.650	0.200							
Maximum	1.200	1.150	0.300	0.100		1	1			

Remarks:

Interv	al·	From:	A 857 00	to	4 909 00	Thickness:	52.00	

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	1.300	1.200	0.100							
Maximum	2.700	1.900	0.800	0.200	0.100				L	

Remarks:

Legend

Total Gas = TG Methane = C1 Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4 Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5 Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 47

K.B. Elevation: 24.00

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jul 8, 2002
 Depth:
 5,219.00

 Time:
 2400 hrs
 Progress:
 281.00

 Rotating Hours:
 13.50 hrs
 Average R.O.P.:
 20.81

Daily Costs: Accumulated Cost:

Formation: Upper A Sequence?

Operational Status: 00:00 hrs: Circulating and raising mud weight

05:30 hrs: Circulating out dummy connection,

mud weight = 13.8 ppg

Operational Summary: Drill ahead, circulate out gas at 5218m, raise mud weight to

13.5 ppg, dummy connection, circulate bottoms up,

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Drill ahead, looking for core point. 72 hr. forecast: Drill ahead, looking for core point

LWD/MWD Sensor Offsets:

Res: = 8.55 GR: = 8.63 Dir: = 16.20 Sonic: = 24.57

Lithology Summary

Kelly Bushing Elevation: 24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation: Ground Elevation:

47 24.00 -977.00

4,940.00 to 5,219.00 (279.00)

The lithology through this interval is predominately shale, a representative description would be:

Shale: medium gray, subblocky, firm to hard, brittle, very calcareous, locally silty, trace very fine disseminated pyrite and carbonaceous flakes, trace limestone stringers.

Locally there is loose pyrite, pyrite veining, thin siltstone and very fine sandstone laminae, crystalline calcite.

From 5135m to 5219m there is sand in the samples, ranging from trace to 20%.

Sand: loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.

Note: Screens on shaker from which samples are collected are now 210 mesh.

Well Name:

Chevron et al Newburn H-23

Scotian Shelf

Date: Time: Jul 8, 2002

7 mil

2400 hrs 5,219.00

Depth:

Progress:

281.00

Report From: Report To:

Location:

Bryan Mac Dougali Barbara Carleton

** All Gas Values are in Percentage **

Interval:	From:	4,909.00	to	5,074.00	ness: 165.00					
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.680	0.580	0.100							
Maximum	3.000	2.800	0.200							

Remarks:

Interval:	From:	5,074.00	to	5,186.00	Thick					
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	1.400	1.300	0.100							
Maximum	3.300	3.000	0.300							

Remarks:

Interval:	From:	5,186.00	to	5,219.00	Thick	ness: 33.	.00			
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	19.300	18.600	0.600	0.100						
Maximum	61.300	57.200	3.600	0.700	0.600					

Remarks: Connection Gases (Canadian gas units) (peak/background/time pumps off)

4938.5 (170/107/9) 4967.0 (252/135/9) 4997.0 (264/137/9) 5025.0 (277/138/9) 5055.0 (300/161/9) 5084.0 (295/170/9) 5114.0 (329/200/8) 5143.0 (324/190/9) 5172.0 (320/190/6)

Legend				
	Total Gas = TG Methane = C1	Ethane = C2 Propane = C3	Iso Butane = IC4 Normal Butane = NC4	Iso Pe Norma
	Mediane - Ci	Fiopane - Co	Normal Dutaile - 1407	14011116

Total Butane = TC4 Total F

Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5 Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 48

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jul 9, 2002
 Depth:
 5,405.00

 Time:
 2400 hrs
 Progress:
 186.00

 Hours:
 9.80 hrs
 Average R.O.P.:
 18.98

Rotating Hours: 9.80 hrs Average R.O.P.: 1

Daily Costs: Accumulated Cost:

Formation: Sequence A?

Operational Status: 00:00 hrs: Well shut in, circulating out kick

00:00 hrs: Well shut in, circulating out kick

Operational Summary: Circulate out dummy connection, raise MW to 13.8 ppg, dummy connection, circulate

out dummy connection, drill ahead, shut-in well, circulate out kick

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Well control 72 hr. forecast: Well control ??

LWD/MWD Sensor Offsets:

Res: = 8.55 GR: = 8.63 Dir: = 16.20 Sonic: = 24.57

Lithology Summary

Kelly Bushing Elevation: 24.00 Ground Elevation: -977.00

** All Depths measured from Kelly Bushing Elevation **

5,219.00 to 5,377.00 (158.00)

Shale: light to medium gray to gray brown, firm, subblocky, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace light gray very fine grained calcareous sandstone laminations, local silty laminations, trace limestone stringers.

Trace Sandstone stringers: light gray, off white, firm to hard, friable to brittle, very fine to fine grained quartz, well sorted, subrounded, calcareous cement, local pyrite cement, grading to sandy limestone, no visible porosity, no shows.

Well Name: Location:

Chevron et al Newburn H-23

Scotian Shelf

Date: Time: Jul 9, 2002

Depth:

2400 hrs 5,405.00

Report From:

Bryan Mac Dougali

Progress:

186.00

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

Interval: From: 5,219.00 to 5,377.00 Thickness: 158.00

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	1.780	1.510	0.400							
Maximum	2.700	2,440	0.900	0.300						

Remarks: SCG @ 5219m (5696/390/15) MW = 13.5 ppg

SCG @ 5219m (3026/135/18) MW = 13.8 ppg

CG @ 5248m (1438/250/8) CG @ 5289m (1484/260/9) CG @ 5318m (1130/225/9) CG @ 5348m (1200/160/8) POG @ 5350m (885/210/3) POG @ 5353m (408/160/2)

Gas measured in Canadian units

POG = pumps off gas

SCG = simulated connection gas

CG = connection gas

Legend

Total Gas = TG Methane = C1

Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4

Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 49

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jul 10, 2002
 Depth:
 5,405.00

 Time:
 2400 hrs
 Progress:
 0.00

Rotating Hours: 0.00 hrs Average R.O.P.: 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence A?

Operational Status: 00:00 hrs: Circulate kill mud

05:30 hrs: Circulate kill mud.

Operational Summary: Circulate out kick, circulate kill mud.

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Well control 72 hr. forecast: Well control ??

LWD/MWD Sensor Offsets:

Res: = 8.55 GR: = 8.63 Dir: = 16.20 Sonic: = 24.57

Max gas while circulating out kick = 36% (3600 Cdn units)

Storage Units: Metric

Jul 11, 2002

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 50
K.B. Elevation: 24.00

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jul 11, 2002
 Depth:
 5,405.00

 Time:
 2400 hrs
 Progress:
 0.00

Rotating Hours: 0.00 hrs Average R.O.P.: 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: 00:00 hrs: Well Control

05:30 hrs: Well Control

Operational Summary: Continue to pump kill weight mud.

Displace riser with kill weight mud.

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Well control

72 hr. forecast: ???

LWD/MWD Sensor Offsets:

Res: = 8.55m GR: = 8.63m Dir: = 16.20m Sonic: = 24.57m

Average gas while circulating kill mud = 32.9% (3920 Cdn u)

Average gas while displacing riser = 2.25%, the connection gas from 5377m was in

the riser (CG= 862/225/8)

Jul 12, 2002

Spud Date: Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Storage Units: Metric

May 22, 2002 @ 12:30 Days from Spud: 51

5,405.00

K.B. Elevation: 24.00 **Ground Elevation:** -977.00

Depth: Jul 12, 2002 Date:

0.00 Progress: Time: 2400 hrs

Average R.O.P.: **Rotating Hours:** hrs

Accumulated Cost: Daily Costs:

Formation: Sequence A?

Operational Status: 00:00 hrs: Circulating well, increasing MW to 14.9 ppg prior to dummy connection.

05:30 hrs: Circulating out dummy connection.

Operational Summary: Circulate will through choke, sweep stack, open well, flow check, circulate, dummy

connection, circulate well, stage up flow rate to 350 gal/min, increase MW to 14.9 ppg.

Report From: Bryan Mac Dougall Report To: Barbara Carleton

Remarks: 24 hr. forecast: Wiper trip

72 hr. forecast: ???

LWD/MWD Sensor Offsets:

Res: = 8.55mGR: = 8.63m Dir: = 16.20m Sonic: = 24.57m

Gas on Btms up after opening well = 61.8% (6180 cdn u)

DCG = 5400/900/15; MW = 14.8 ppg

Storage Units: Metric

Geological Morning Report

Jul 13, 2002

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date: Days from Spud: May 22, 2002 @ 12:30

52

K.B. Elevation: Ground Elevation:

24.00 -977.00

Date: Time: Jul 13, 2002

2400 hrs

Depth: Progress: 5,405.00 0.00

Rotating Hours:

0.00 hrs

Average R.O.P.:

0.00

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: 00:00 hrs: circulating btms up from 4470m

05:00 hrs: Washing in hole

Operational Summary: Circulate, dummy connection (23 mins), circulate, wash to 5405m, circulate, pump out

to 4997m, circulate btms up +, pump out to 4470m, circulate btms up +,

Report From:

Bryan MacDougall **Barbara Carleton**

Report To: Remarks:

24 hr. forecast: Circulate out gas, extended flow check, circulate

72 hr. forecast: ???

DCG (2400/200/23)

Btms up from washing to bottom = 23.9% (2390 u)

Btms up from 4397m = 56.7% (5670 u)

Test Gas equipment (OK)

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 53

K.B. Elevation: 24.00

Ground Elevation: 24.00
-977.00

 Date:
 Jul 14, 2002
 Depth:
 5,423.00

 Time:
 0 hrs
 Progress:
 18.00

 Rotating Hours:
 7.30 hrs
 Average R.O.P.:
 2.47

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: 00:00 hrs: Drill ahead

05:30 hrs: Depth 2425m, Exended flow check

Operational Summary: Circ well, wash to bottom, circ. well, lay out 1 single, p/u 1 std, drill ahead.

Report From: Bryan MacDougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Extended flow check, circulate btms up, POOH

72 hr. forecast:log, run liner.

Flow rate not high enough to turn on LWD/MWD tools.

Lithology Summary

Kelly Bushing Elevation: 24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

5,405.00 to 5,425.00 (20.00)

Shale: (85%) medium gray to gray brown, subblocky, soft to firm, slightly calcareous, silty, in part, fine disseminated carbonaceous specks, calcareous stringers, locally pyritic, trace orange brown calcareous stringers (siderite?).

Siltstone: (12%) light gray, soft to firm, quartz grains, trace feldspar and glauconite, slightly calcareous, carbonaceous specks, grading to silty shale.

Sandstone: (3%) light gray brown, soft to very hard, quartz, trace glauconite, very fine to fine grained, well sorted, subangular, hackly texture, generally well cemented with siliceous cement, calcareous matrix, locally pyritic, poor visible porosity, no shows.

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 54

K.B. Elevation: 24.00 Ground Elevation: -977.00

 Date:
 Jul 15, 2002
 Depth:
 5,425.00

 Time:
 2400 hrs
 Progress:
 2.00

Rotating Hours: 0.60 hrs Average R.O.P.: 3.33

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: 00:00 hrs: Circulating up choke / kill lines with lower annular closed.

05:30 hrs: Circulating well

Operational Summary: Drill 5423m - 5425m, Circulate, flow check and bleed back volume, circulate well,

erratic returns, close diverter - shut in on lower annular, circulate riser, monitor gas, open diverter, circulate riser, change out packer on diverter (monitor well on trip tank,

circulate through choke) circulate up choke/kill lines with annular closed.

Report From: Bryan MacDougall Report To: Barbara Carleton

Remarks:

24 hr. forecast: Circulate, extended flow check

72 hr. forecast: wireline log

Max gas = 55.7% (5570 Cdn u) (gas reading prior to shutting diverter and lower

annular)

Storage Units: Metric

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date: Days from Spud: May 22, 2002 @ 12:30

Jul 16, 2002

K.B. Elevation: Ground Elevation:

55 24.00 -977.00

Date:

Jul 16, 2002

Depth:

5,425.00

Time: **Rotating Hours:** 2400 hrs 0.00 hrs

Progress: Average R.O.P.: 0.00 0.00

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Pulling out of hole to log.

5:30 Status: Pumping out of hole at 4365 meters.

Operational Summary: Open annular and circulate well, preform extended flow check, circulate bottoms up

until background gas down to 200 units, begin to pump out of hole.

Remarks:

Report From: Cyril Mac Pherson

Report To: Barbara Carleton

24hr Forecast: Complete trip and begin logging with Schlumberger.

72hr Forecast: Complete logging and run casing.

BTM up after opening annular 56.7%

Flow check gas 63.5%

Storage Units: Metric Geological Morning Report

Jul 18, 2002

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 57

K.B. Elevation: 24.00

Ground Elevation: -977.00

 Date:
 Jul 18, 2002
 Depth:
 5,425.00

 Time:
 2400 hrs
 Progress:
 0.00

 Rotating Hours:
 0.00 hrs
 Average R.O.P.:
 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: POOH with logging tools.

5:30 Status: RIH for clean out trip.

Operational Summary: Complete trip out of hole, rig up Schlumberger and run logs.1 descent, two logging

runs, CNL-LDT-OBMI, CMR.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: RIH to TD, breaking circulation at bottom of riser, halfway in casing and

at shoe.

72hr Forecast: Complete wiper trip, circulate hole clean and POOH to complete

logging.

Jul 19, 2002 Storage Units: Metric

Spud Date: May 22, 2002 @ 12:30 Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf Days from Spud: 58 K.B. Elevation: 24.00

Ground Elevation: -977.00

Jul 19, 2002 5,425.00 Date: Depth: 0.00 Time: 2400 hrs Progress:

0.00 Average R.O.P.: **Rotating Hours:** 0.00 hrs

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: Circulating at casing shoe.

5:30 Status: Washing into hole at 4828 meters.

Operational Summary: POOH with wireline and rig down, begin to RIH for clean out trip. Run in to bottom of

riser and flush out riser, run in to 2727 meters and circulate casing, continue to run in to

casing shoe and circulate hole clean.

Report From: Cyril Mac Pherson Barbara Carleton Report To:

Remarks:

24hr Forecast: RIH to bottom, circulate hole clean and insure well is static, POOH to

continue logging.

72hr Forecast. Complete logging and run liner.

Gas Peaks

Circulate Riser: 1.7%

Circulate btm's up at 2727: 23.7% Circulate btm's up at shoe: 64.8% Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 60
K.B. Elevation: 24.00
Ground Elevation: -977.00

Date: Jul 21, 2002 Depth: 5,425.00
Time: 2400 hrs Progress: 0.00

Time: 2400 hrs Progress: 0.00 Rotating Hours: 0.00 hrs Average R.O.P.: 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: Circulating bottoms up after flow check.

5:30 Status: Pumping out of hole at 5025 meters.

Operational Summary: RIH from 5135 to 5425 pumping each stand in, circulate from TD with maximum gas of

67.1% and MW cut to 1670 kg/m3, continue to pump until gas values drop below 400 unit and returning MW is 1780kg/m3. Flow check for 80 minutes, circulate bottoms up.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: POOH and begin logging.

72hr Forecast: Complete logging and run casing.

GAS PEAKS TG% C1% C2% C3% C4% Circulating at 5135 : 66.3 60.6 4.5 0.9 0.2 Circulating at 5425: 67.1 61.4 4.6 0.9 0.2

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 61

K.B. Elevation: 24.00

Ground Elevation: -977.00

 Date:
 Jul 22, 2002
 Depth:
 5,425.00

 Time:
 2400 hrs
 Progress:
 0.00

 Rotating Hours:
 0.00 hrs
 Average R.O.P.:
 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: Rigging up Schlumberger

5:30 Status: Logging, CNL-LDT

Operational Summary: Pump out of hole to casing, circulate at casing and flow check, pull wet for 5 stands,

hole fill good, pump slug and POOH to riser, boost riser clean and complete trip. Rig

up Schlumberger.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: Log with Schlumberger 72hr Forecast: Run casing and cement.

Bottoms up gas from Flow Check at 5425: 2.6%

Boost riser gas: 2.4%

Jul 23, 2002

May 22, 2002 @ 12:30 Well Name: Chevron et al Newburn H-23 Spud Date:

Location: Scotian Shelf Davs from Spud: 62 K.B. Elevation: 24.00 **Ground Elevation:** -977.00

> 5,425.00 Depth: Date: Jul 23, 2002 Time: 2400 hrs Progress: 0.00

Average R.O.P.: 0.00 0.00 hrs **Rotating Hours:**

Daily Costs: Accumulated Cost:

Formation: Sequence A

Storage Units: Metric

Operational Status: Pulling out of hole with MSCT.

5:30 Status: Rigging up to run casing.

Operational Summary: Complete first logging descent successfully, POOH and rig down CNL-LDT, rig up

MSCT and RIH, problems with tool, pick up backup and RIH, cut 25 sidewall cores,

POOH with MSCT.

Report From: Cyril Mac Pherson Barbara Carleton Report To:

Remarks:

24hr Forecast: Run casing.

72hr Forecast: Cement casing and run VSP in cased hole.

Jul 26, 2002 Storage Units: Metric

Spud Date: May 22, 2002 @ 12:30 Well Name: Chevron et al Newburn H-23

Days from Spud: 65 Location: Scotian Shelf K.B. Elevation: 24.00

Ground Elevation: -977.00

Depth: 5,425.00 Jul 26, 2002 Date: Progress: 0.00 2400 hrs Time: Average R.O.P.: 0.00 **Rotating Hours:** 0.00 hrs

Accumulated Cost: Daily Costs:

Formation: Sequence A

Operational Status: Running in Hole to test BOP's.

5:30 Status: Testing BOP's.

Operational Summary: Circulate well before cementing liner, maximum gas of 63.4%. Cement liner, pull back

to 3925 and circulate until background gas values drop to 2%. POOH, make up testing

string and RIH.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: Complete stack test, RIH and drill out.

72hr Forecast: Run VSP, drill ahead.

Jul 27, 2002 Storage Units: Metric

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: 66 K.B. Elevation: 24.00 **Ground Elevation:** -977.00

> Jul 27, 2002 Depth: 5,425.00 Date:

Time: 2400 hrs Progress: 0.00 0.00 hrs Average R.O.P.: 0.00 **Rotating Hours:**

Accumulated Cost: Daily Costs:

Formation: Sequence A

Operational Status: Running in hole with 165mm bit.

5:30 Status: Running in hole.

Operational Summary: RIH with test plug, pressure test stack, POOH and test surface equipment, lay down

test stand and make up 165 mm bit and BHA, RIH picking up 102 mm drill pipe.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: RIH and drill out cement and shoe, spot LCM plug and POOH to run

72hr Forecast: Complete VSP and RIH for FIT.

Jul 28, 2002

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

67 24.00

Ground Elevation:

-977.00

Date: Time:

Jul 28, 2002 2400 hrs

Depth: Progress:

5,425.00 0.00

Rotating Hours:

Storage Units: Metric

0.00 hrs

Average R.O.P.:

0.00

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Circulating, displacing to 1812kg/m3 mud

5:30 Status: Drilling out shoe track.

Operational Summary: RIH picking up 102mm (35 stands) drill pipe, run in to 4070 meters, wash down through

top of liner, circulate at 4261 meters raising mud weight to 1812kg/m3. Continue to run

in to 5363, tagging wiper plug, displace hole to 1812 kg/m3 mud.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: Drill out shoe and spot LCM plug, POOH and begin logging VSP.

72hr Forecast: Complete VSP run, RIH for FIT.

Storage Units: Metric Geological Morning Report

Jul 29, 2002

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf

Days from Spud: 68

K.B. Elevation: 24.00

Ground Elevation: -977.00

 Date:
 Jul 29, 2002
 Depth:
 5,427.00

 Time:
 2400 hrs
 Progress:
 2.00

Rotating Hours: 0.00 hrs Average R.O.P.: 0.00

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: Circulating bottoms up.

5:30 Status: Pulling out of hole to run VSP.

Operational Summary: Drill shoe track and float equipment, drill 2 meters new hole to 5427.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: POOH and run VSP

72hr Forecast: Complete VSP run, Conduct FIT, RIH and drill ahead.

NOTE: Maximum gas from botoms up, 4.2%.

Geological Morning Report Storage Units: Metric

Jul 30, 2002

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

69 24.00

Ground Elevation:

-977.00

Date: Time: Jul 30, 2002

2400 hrs

Depth: Progress: 5,427.00 0.00

Rotating Hours:

0.00 hrs

Average R.O.P.:

0.00

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Wireline logging, VSP.

5:30 Status: Rigging Down Schlumberger

Operational Summary: Circulate bottoms up, POOH, rig up Schlumberger and begin running VSP.

Report From:

Cyril Mac Pherson Barbara Carleton

Report To: Remarks:

24hr Forecast: Complete VSP, conduct FIT, drill ahead.

72hr Forecast: Drill ahead.

Jul 31, 2002 Storage Units: Metric

Spud Date: May 22, 2002 @ 12:30 Well Name: Chevron et al Newburn H-23

Days from Spud: 70 **Location: Scotian Shelf** K.B. Elevation: 24.00 **Ground Elevation:** -977.00

> Jul 31, 2002 Depth: 5,427.00 Date: Progress: 0.00 Time: 2400 hrs

Average R.O.P.: 0.00 0.00 hrs **Rotating Hours:**

Accumulated Cost: Daily Costs:

Formation: Sequence A

Operational Status: Running in hole at 4805 meters.

5:30 Status: Drilling at 5436 meters.

Operational Summary: Complete VSP's, rig down Sclumberger, conduct FIT to 1980 kg/m3 before running in

hole, make up LWD and surface test, RIH.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: Perform FIT to 2040 kg/m3, then drill ahead.

72hr Forecast: Drill ahead looking for core point.

NOTE: LWD tool failed to function, plan to drill ahead 85 meters without the LWD.

Storage Units: Metric

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

Depth:

71 24.00

Date: Time:

Aug 1, 2002 2400 hrs

Progress:

5,480.00 53.00

-977.00

Rotating Hours:

6.80 hrs

Average R.O.P.:

Ground Elevation:

7.79

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Pulling out of hole to change out LWD and mud motor.

5:30 Status: Running in hole.

Operational Summary: RIH with 117 mm bit, conduct FIT to 2040 kg/m3 EMW, lwd tool failure, drill ahead to

5480, mud motor failure, circulate bottoms up and POOH.

Report From: Cyril Mac Pherson Report To:

Barbara Carleton

Remarks:

24hr Forecast: Change out Anadril tools and RIH to drill ahead.

72hr Forecast: Drill ahead looking for a core point.

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

5,425.00 to 5,480.00

(55.00)

Shale: Medium gray and partly light gray, slightly brownish in part, calcareous, silty, common white calcite fragments and veins, trace pyrite and occasional carbonaceous

stks and flakes, rare loose sand grains, rare trace Inoceramus.

Storage Units: Metric Morning Report Gas Summary

Aug 1, 2002

Well Name:

Chevron et al Newburn H-23

Location:

Scotian Shelf

Date:

Aug 1, 2002

Time: Depth: 2400 hrs 5,480.00

Report From:

Cyril Mac Pherson

Progress:

53.00

Report To: Barbara Carleton

** All Gas Values are in Percentage **

Interval: From: 5,427.00 to 5,480.00 Thickness: 53.0	.00
--	-----

	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.340	0.310								
Maximum	0.820	0.780								

Remarks: Trip Gas: 2.2%/0.5%/47.5 hrs

Legend

Total Gas = TG Methane = C1 Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4 Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5 Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

72 24.00

Ground Elevation:

-977.00

Date: Time:

Aug 2, 2002

Depth: Progress: 2400 hrs

5,517.00 37.00

Rotating Hours:

5.00 hrs

Average R.O.P.:

7.40

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Drilling 117mm hole.

5:30 Status: Drilling ahead.

Operational Summary: POOH, change out MWD tool and mud motor, RIH, function test mwd on way in hole,

drill 177 mm hole to 5517.

Report From: Cyril Mac Pherson Report To: Barbara Carleton

Remarks:

24hr Forecast: Drill ahead to a core point. 72 hr Forecast: Drill ahead to a core point.

NOTE: LWD offset: GR: 14.63

Res: 12.38

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

5,480.00 to 5,505.00

(25.00)

Shale: Medium gray, partly dark gray, blocky, slightly silty, calcareous with minor to

trace white limestone stringers and streaks,

5,505.00 to 5,525.00 (20.00)

Shale: 95% Medium gray, dark gray in part, slightly silty, calcareous, trace carbonaceous, occasional thin siltstone stringers and interbeds.

Siltstone: 5% Gray, friable to firm, calcareous and argillaceous, common carbonaceous

material.

Storage Units: Metric

Aug 2, 2002

Well Name: Location:

Chevron et al Newburn H-23

Scotian Shelf

Date: Time: Aug 2, 2002

Depth:

2400 hrs 5,517.00

Report From:

Cyril Mac Pherson

Progress:

37.00

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

Interval:	From:	5,480.00	to	5,495.00	Thickness: 15.00						
T T	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5	
Minimum	0.370	0.360									
Maximum	0.450	0.430									

Remarks: TRIP GAS: 1.3%/0.4%/24hrs

Legend

Total Gas = TG Methane = C1 Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4 Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5 Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

Depth:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

73 24.00

Ground Elevation:

Aug 3, 2002 Date: Time: 2400 hrs

Progress:

5,682.00 165.00

-977.00

20.00 hrs **Rotating Hours:**

Average R.O.P.:

8.25

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Drilling ahead.

5:30 Status: Drilling ahead, 2.5 m/hr

Operational Summary: Drill 117mm hole from 5517 to 5682 meters.

Report From: Cvril Mac Pherson Report To: **Barbara Carleton**

Remarks:

24hr Forecast: Drill ahead to possible core point. 72hr Forecast: Drill ahead to possible core point.

LWD Offsets: GR: 14.69 m

RES: 12.43 m

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

5,525.00 to 5,680.00 (155.00)

Shale: Predominately medium gray and brownish gray, silty, calcareous at top of section becoming less calcareous with depth, common white calcite or limestone fragments, possible shell fragments, locally grading to argillaceous siltstone locally up

to 20%, occasional loose sand grains.

5,680.00 to 5,685.00 (5.00)

Shale: 70% medium gray to brownish in part, firm to blocky, silty, occasional white calcite, trace pyrite, minor argillaceous siltstone stringers and lenses, slightly sandy.

Siltstone: 30% light gray to grayish white, friable, argillaceous and trace calcareous,

partly sandy, trace carbonaceous.

5,685.00 to 5,690.00 (5.00)

Shale: 80 % medium gray to brownish in part, firm to blocky, silty, occasional white calcite, trace pyrite, minor argillaceous siltstone stringers and lenses, slightly sandy.

Sandstone: 20% light grayish white, very fine grained to silty, subangular and well sorted, partly friable with argillaceous cement to hard with silica cement, minor shaly laminae, tight, no shows.

Morning Report Gas Summary

Aug 3, 2002

Storage Units: Metric

Well Name:

Chevron et al Newburn H-23

Scotian Shelf

Date: Time:

Aug 3, 2002

Location:

Depth:

2400 hrs 5,682.00 165.00

Report From:

Cyril Mac Pherson

Progress:

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

Interval:	From:	5,500.00	to	5,670.00	Thick	ness: 170	0.00			
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.460	0.440								
Maximum	0.640	0.610								

Remarks: Connection gas: 0.9%/0.6%/5min at 5611

1.0%/0.6%/5min at 5640

Legend

Total Gas = TG Methane = C1

Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4

Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5

Storage Units: Metric

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Aug 4, 2002

Location: Scotian Shelf Days from Spud: 74 K.B. Elevation: 24.00

Ground Elevation: -977.00

Aug 4, 2002 5,754.00 Date: Depth: Time: 2400 hrs Progress: 72.00 21.00 hrs **Rotating Hours:** Average R.O.P.: 3.43

Daily Costs: Accumulated Cost:

Formation: Sequence A

Operational Status: Drilling ahead.

Operational Summary: Drill 117mm hole from 5682 to 5754 meters.

5:30 Status: Drilling ahead at 5778, 4 meter/hr.

Report From: Cyril Mac Pherson Barbara Carleton Report To:

Remarks:

24hr Forecast: Drill ahead, possible bit trip. 72hr Forecast: Drill ahead looking for a core point.

Lithology Summary

24.00 **Ground Elevation: Kelly Bushing Elevation:** -977.00

** All Depths measured from Kelly Bushing Elevation **

Shale: Medium gray and partly brownish, firm to blocky and partly amorphous, slightly 5,690.00 to 5,760.00 silty with common very fine sandstone clasts and stringers, occasional calcareous (70.00)

fragments and streaks, minor loose sand grains.

Storage Units: Metric Morning Report Gas Summary

Aug 4, 2002

Well Name:

Chevron et al Newburn H-23

Location:

Scotian Shelf

Date:

Aug 4, 2002

Time:

2400 hrs

Depth:

5,754.00

Report From:

Cyril Mac Pherson

Progress:

72.00

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

Interval:	From:	5,670.00	to	5,750.00	Thick	ness: 80.	00			
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.380	0.360	-							
Maximum	0.560	0.540								

Remarks: Connection Gas: 0.60% / 0.40% / 5min at 5669 0.96% / 0.50% / 5min at 5697 1.17% / 0.54% / 5min at 5727

Legend

Total Gas = TG Methane = C1 Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4 Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5 Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

75 24.00

Ground Elevation:

-977.00

Date: Aug 5, 2002

Time: 2400 hrs

Depth: Progress: 5,786.00 32.00

Rotating Hours:

hrs

Average R.O.P.:

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Tripping out of hole for new bit.

5:30 Status: Running in hole with bit #9.

Operational Summary: Drill 117mm hole from 5754 to 5786, slow rop and torque, circulate bottoms up and

begin to POOH.

Report From: Cyril Mac Pherson **Barbara Carleton**

Report To: Remarks:

24hr Forecast: Complete bit trip, and drill ahead

72hr Forecast: Drill ahead looking for something to core.

Lithology Summary

Kelly Bushing E	Elevation:
-----------------	------------

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

5.760.00 to 5.773.00 (13.00)

Shale: medium gray and medium brownish gray, firm to blocky and slightly amorphous, silty, occasional to common calcareous fragments, minor siltstone stringers or clasts,

occasional ssstrgs and or clasts.

5,773.00 to 5,775.00 (2.00)

Siltstone: light gray to gray white, friable, argillaceous, sandy in part, locally becoming

very fine grained sandstone, trace carbonaceous material.

5,775.00 to 5,779.00 (4.00)

Sandstone: off white, very fine grained, subrounded and well sorted, hard and siliceous, no visible porosity, no shows, common loose sand grains.

5,779.00 to 5,786.00 (7.00)

Shale: medium brownish gray, blocky and firm, silty in part, occasional calcareous

fragments, minor siltstone and rare sandstone, trace pyrite.

Well Name:

Report From:

Maximum

Chevron et al Newburn H-23

Location:

Scotian Shelf

Date:

Aug 5, 2002

Time:

2400 hrs 5,786.00

Cyril Mac Pherson

Barbara Carleton

Depth: Progress:

32.00

Report To: Barbara Ca

0.310

** All Gas Values are in Percentage **

Interval:	From:	5,750.00	to	5,786.00	Thick	ness: 36	.00			
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.230	0.220								

Remarks: Connection gas: 1.09% / 0.30% / 5 mins at 5754 0.70% / 0.26% / 5 mins at 5781

0.290

Legend

Total Gas = TG Methane = C1 Ethane = C2 Propane = C3 Iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4 Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5 Storage Units: Metric

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

76 24.00

Ground Elevation:

-977.00

Date: Time: Aug 6, 2002 2400 hrs

Depth: Progress: 5,812.00 26.00

Rotating Hours:

5.20 hrs

Average R.O.P.:

5.00

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Drill Ahead

05:30 status: Drill ahead

Operational Summary: Drill new hole from 5786 - 5812m

Report From: Report To: Bryan Mac Dougall

Remarks:

Barbara Carleton

24 hr forecast: drill ahead 72 hr forecast: drill ahead

Sensor Offsets:

Gamma Ray = 14.69 m Resistivity = 12.43

Note:

1) Resistivity tool failure.

2) Problems with datalogs well wizzard & database.

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

5,786.00 to 5,810.00 (24.00)

Shale 98%: medium brown to gray brown, subblocky, soft to firm, silty, calcareous, locally pyritic, minor light gray siltstone laminations, trace light gray to off white very fine

grained sandstone laminations, trace calcareous laminations, local calcareous

fragments.

Siltstone 2%: light gray, soft, friable, carbonaceous in part.

5,810.00 to 5,815.00

(5.00)

Shale 100%: light gray brown to brown, subblocky, soft to firm, silty, calcareous, locally

pyritic, minor light gray siltstone laminations, common calcareous fragments, trace

white limestone stringers.

Well Name: Location: Chevron et al Newburn H-23

Scotian Shelf

Date: Time: Aug 6, 2002 2400 hrs

Depth:

5,812.00

Report From:

Bryan Mac Dougail

Progress:

26.00

Report To:

Barbara Carleton

** All Gas Values are in Percentage **

Interval:	From:	4,586.00	to	5,800.00	Thick	ness: 1,2	14.00			
	TG	C1	C2	C3	IC4	NC4	TC4	IC5	NC5	TC5
Minimum	0.380	0.370								
Maximum	0.640	0.600								

Remarks: Trip Gas = 2966/50/33 hrs

Legend

Total Gas = TG Methane = C1 Ethane = C2 Propane = C3 iso Butane = IC4 Normal Butane = NC4 Total Butane = TC4 Iso Pentane = IC5 Normal Pentane = NC5 Total Pentane = TC5 Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date:

May 22, 2002 @ 12:30

Days from Spud: K.B. Elevation:

77 24.00

Ground Elevation:

-977.00

Date: Time: Aug 7, 2002 2400 hrs

Depth: **Progress:** 5,951.00 139.00

Rotating Hours:

22.60 hrs

Average R.O.P.:

6.15

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Drill Ahead

05:30 status: Drill Ahead

Operational Summary: Drill ahead.

Report From: Report To:

Bryan Mac Dougall Barbara Carleton

Remarks:

24 hr forecast: drill ahead

72 hr forecast: drill ahead

Sensor Offsets:

Gamma Ray = 14.69 m Resistivity = 12.43

Note:

1) Resistivity tool failure.

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

5,815.00 to 5,820.00

(5.00)

Shale 85%: gray, subblocky, soft to firm, silty, very calcareous, local fine disseminated pyrite, carbonaceous specks, trace white limestone stringers.

Sand 15%: predominately loose very fine clear quartz grains, trace feldspar,

subrounded, well sorted, occasionally weakly consolidated with calcareous cement, friable, trace carbonaceous specks, trace white limestone stringers, no visible porosity,

no shows.

5,820.00 to 5,920.00

(100.00)

Shale 100%: light gray to gray brown, subblocky, firm, brittle, calcareous, calcareous stringers and micro laminae, silty in part, fine disseminated pyrite, trace carbonaceous

specks, trace white limestone fragments.

5,920.00 to 5,930.00

(10.00)

Shale 100%: medium brown, firm, brittle, slightly calcareous, silty in part, fine

disseminated pyrite.

Aug 7, 2002 Storage Units: Metric

Well Name: Chevron et al Newburn H-23 Spud Date: May 22, 2002 @ 12:30

Location: Scotian Shelf Days from Spud: **77** K.B. Elevation: 24.00 **Ground Elevation:** -977.00

5,930.00 to 5,940.00 Shale 100: light to medium gray brown, firm, brittle, slightly calcareous, inc in silt (10.00) content + silty laminae, fine disseminated and nodular pyrite, trace white limestone

fragments and laminations.

Well Name: Chevron et al Newburn H-23

Location: Scotian Shelf

Spud Date: May 22, 2002 @ 12:30

Days from Spud: 78 K.B. Elevation: 24.00

Ground Elevation:

-977.00

Date: Aug 8, 2002 Time: 2400 hrs

20.70 hrs **Rotating Hours:**

Depth: **Progress:** 6,051.00 100.00

Average R.O.P.:

4.83

Daily Costs:

Accumulated Cost:

Formation: Sequence A

Operational Status: Drill ahead.

05:30 status: Circ btms up at TD (6070m MD), LWD/MWD failure and pressure loss

necessitated calling TD.

Operational Summary: Drill ahead, weigh up mud to 15.8 ppg.

Report To:

Report From: Bryan Mac Dougall **Barbara Carleton**

Remarks:

24 hr forecast: Circulate hole clean, POOH, R/U Schlumberger

72 hr Forecast: Run Wireline, prepare to P & A.

Lithology Summary

Kelly Bushing Elevation:

24.00

Ground Elevation:

-977.00

** All Depths measured from Kelly Bushing Elevation **

5,940.00 to 5,954.00 (14.00)

Shale 100%: medium gray, firm, brittle, slightly calcareous, silty, common light gray coarse silt laminae, fine disseminated and nodular pyrite, trace carbonaceous

laminations.

5,954.00 to 5,958.00

(4.00)

Siltstone: light gray to off white, soft to firm, friable, coarse silt to very fine sand. arenaceous, quartz grains, trace carbonaceous laminations, locally slightly calcareous,

grading to very fine grained sandstone.

Sandstone: light gray to off white, soft, friable, quartz, very fine grained, well sorted, poorly cemented with calcareous cement, poor visible porosity; + loose unconsolidated quartz grains, very fine to lower fine grained, moderately well sorted, subrounded, no

shows.

5.958.00 to 6.055.00 (97.00)

Shale 100%: brown to gray brown, soft to firm, brittle, calcareous, pyritic, minor silty laminae, trace white limestone fragments and stringers, trace carbonaceous specks.

Appendix O Detailed Drill Cuttings Descriptions

Appendix O
Detailed Drill Cuttings Descriptions

Chevron et al Newburn H-23 **Detailed Drill Cuttings Descriptions**

(10 meter spacing)	
1,920.00 to 1,930.00	95% Cement Cement from shoe. 5% Claystone medium gray to gray grn, soft, amorphous, slightly calcareous.
1,930.00 to 1,940.00	70% Claystone gray to gray green, soft, slightly calcareous, glauconite grains. 30% Cement Cement from shoe.
1,940.00 to 1,950.00	70% Claystone gray to gray green, soft to firm, fine glauconite grains, trace loose very fine quartz grains, very fine disseminated pyrite. 30% Cement Cement from shoe.
1,950.00 to 1,960.00	70% Claystone gray to gray green, soft to firm, fine glauconite grains, trace loose very fine quartz grains, very fine disseminated pyrite. 30% Cement Cement from shoe.
1,960.00 to 1,970.00	80% Claystone gray to gray green, soft to firm, fine glauconite grains, trace loose very fine quartz grains, very fine disseminated pyrite. 20% Cement Cement from shoe.
1,970.00 to 1,980.00	100% Claystone gray, gray green, soft to firm, fine glauconite grains, trace loose very fine quartz grains, very fine disseminated pyrite.
1,980.00 to 1,990.00	100% Claystone gray, silty, amorphous, common glauconite grains, trace carbonaceous flakes, occasional disseminated pyrite.
1,990.00 to 2,000.00	100% Claystone gray, silty, amorphous, common glauconite grains, occasional disseminated pyrite, trace carbonaceous flakes, trace sand grains.
2,000.00 to 2,010.00	100% Claystone gray, silty, amorphous, common glauconite grains, occasional disseminated pyrite, trace carbonaceous flakes, trace sand grains.
2,010.00 to 2,020.00	100% Claystone gray, silty, amorphous, minor glauconite grains, occasional disseminated pyrite, trace carbonaceous flakes.
2,020.00 to 2,030.00	100% Claystone gray, firm, silty, trace carbonaceous flakes, rare glauconite, very slightly calcareous.
2,030.00 to 2,040.00	100% Claystone gray, firm, silty, trace carbonaceous flakes, rare glauconite, very slightly calcareous.
2,040.00 to 2,050.00	100% Claystone gray, firm, silty, trace carbonaceous flakes, rare glauconite, very slightly calcareous.
2,050.00 to 2,060.00	100% Claystone gray, firm to amorphous in part, silty, trace carbonaceous flakes.
2,060.00 to 2,070.00	100% Claystone medium gray, silty in part, firm to amorphous, minor trace glauconite and disseminated pyrite, trace carbonaceous flakes.
2,070.00 to 2,080.00	100% Claystone medium gray, silty, firm, partly amorphous, trace disseminated pyrite, minor glauconite grains, trace sand grains.

2,080.00 to 2,090.00	100% Claystone medium gray, silty, firm, partly amorphous, trace disseminated pyrite, minor glauconite grains, trace sand grains.
2,090.00 to 2,100.00	100% Claystone medium gray, silty, firm, partly amorphous, trace disseminated pyrite, minor glauconite grains, trace sand grains.
2,100.00 to 2,110.00	100% Claystone medium gray, trace light gray and slightly calcareous, trace very fine siliceous and slightly carbonaceous sandstone.
2,110.00 to 2,120.00	100% Claystone medium gray, silty, firm, amorphous, trace carbonaceous and rare glauconite grain.
2,120.00 to 2,130.00	100% Claystone gray to gray brown, amorphous to subblocky, firm to brittle, very fine disseminated pyrite, trace carbonaceous specks, silty in part.
2,130.00 to 2,140.00	100% Claystone gray to gray brown, amorphous to subblocky, firm to brittle, very fine disseminated pyrite, trace carbonaceous specks, rare glauconite grains, silty in part.
2,140.00 to 2,150.00	100% Claystone gray to gray brown, amorphous to subblocky, firm to brittle, very fine disseminated pyrite, trace carbonaceous specks, rare glauconite grains, silty in part, locally grading to shale.
2,150.00 to 2,160.00	100% Claystone gray brown, amorphous to subblocky, firm to brittle, very fine disseminated pyrite, rare carbonaceous specks and glauconite grains, very fine silt, locally grading to shale.
2,160.00 to 2,170.00	100% Claystone gray brown, amorphous to subblocky, firm to brittle, very fine disseminated pyrite, rare carbonaceous specks and glauconite grains, very fine silt.
2,170.00 to 2,180.00	100% Claystone gray and gray brown, amorphous to subblocky, firm to brittle, very fine disseminated pyrite, rare carbonaceous specks and glauconite grains, very fine silt, locally grading to shale.
2,180.00 to 2,190.00	100% Claystone gray brown, amorphous to subblocky, firm to brittle, trace very fine disseminated pyrite, rare carbonaceous specks.
2,190.00 to 2,200.00	100% Claystone gray brown, amorphous to subblocky, firm to brittle, trace very fine disseminated pyrite, rare carbonaceous specks.
2,200.00 to 2,210.00	100% Claystone gray brown, silty, firm and amorphous.
2,210.00 to 2,220.00	100% Claystone gray brown, silty, firm and amorphous, rare very fine sandstone stringer.
2,220.00 to 2,230.00	100% Claystone gray brown, silty, firm and amorphous, common glauconite grains.
2,230.00 to 2,240.00	100% Claystone gray, brownish in part, silty, firm and amorphous, trace glauconite.
2,250.00 to 2,260.00	100% Claystone gray, brownish in part, firm, amorphous, blocky in part, trace carbonaceous flakes, silty, rarely marly.
2,260.00 to 2,270.00	 95% Claystone gray, brownish in part, firm, amorphous, blocky in part, trace carbonaceous flakes, silty. 5% Limestone light beige, lime mudstone, argillaceous, trace carbonaceous, moderate hard.

2,270.00 to 2,280.00	100% Claystone gray, brownish in part, firm, amorphous, blocky in part, trace carbonaceous flakes, silty, common limestone stringers, common green very fine glauconite grains in clay matrix.
2,280.00 to 2,290.00	100% Claystone gray, gray brown in part, firm, moderately amorphous, blocky in part, silty, trace carbonaceous flakes, minor beige limestone stringers, occasional glauconitic sandstone laminae.
2,290.00 to 2,300.00	100% Claystone gray, gray brown in part, firm, moderately amorphous, blocky in part, silty, trace carbonaceous flakes, minor beige limestone stringers, occasional glauconitic sandstone laminae.
2,300.00 to 2,310.00	100% Claystone gray brown, firm, amorphous to blocky silty, trace carbonaceous flakes, minor beige limestone stringers, occasional glauconitic sandstone laminae.
2,310.00 to 2,320.00	100% Claystone gray brown, firm, amorphous to blocky silty, trace carbonaceous flakes, minor beige limestone stringers, occasional glauconitic sandstone laminae.
2,320.00 to 2,330.00	100% Claystone gray brown, firm, amorphous to subblocky, silty, trace carbonaceous flakes, very fine glauconite grains, fine disseminated pyrite.
2,330.00 to 2,340.00	100% Claystone gray brown, firm, amorphous to subblocky, silty, trace carbonaceous flakes, very fine glauconite grains, fine disseminated pyrite.
2,340.00 to 2,350.00	100% Claystone gray brown, firm, amorphous to subblocky, silty, trace carbonaceous flakes, very fine glauconite grains, fine disseminated pyrite.
2,350.00 to 2,360.00	100% Claystone gray brown, firm, partly amorphous, slightly silty, trace carbonaceous flakes.
2,360.00 to 2,370.00	100% Claystone gray brown, firm, partly amorphous, slightly silty, trace carbonaceous flakes, trace limestone stringers and trace glauconite.
2,370.00 to 2,380.00	100% Claystone gray brown, firm, partly amorphous, slightly silty, trace carbonaceous flakes, trace limestone stringers and trace glauconite, trace very fine grained glauconitic sandstone.
2,380.00 to 2,390.00	100% Claystone brown, gray brown, firm to partly amorphous, silty in part, trace carbonaceous flakes.
2,390.00 to 2,400.00	100% Claystone gray and brownish gray, firm to blocky, amorphous in part, slightly silty, common trace glauconite, occasional beige limestone laminae.
2,400.00 to 2,410.00	100% Claystone gray and brownish gray, firm to blocky, amorphous in part, slightly silty to trace very fine sandy, common trace glauconite, occasional beige limestone laminae.
2,410.00 to 2,420.00	100% Claystone gray and brownish gray, firm to blocky, amorphous in part, slightly silty, common trace glauconite, trace limestone laminae.
2,420.00 to 2,430.00	100% Claystone gray brown, firm, blocky in part, slightly amorphous, silty in part, common trace glauconite.
2,430.00 to 2,440.00	100% Claystone gray brown, trace light green, firm, blocky in part, slightly amorphous, silty in part, common trace glauconite.

Chevron et al N	ewburn H-23
-----------------	-------------

Well History Report	Chevron et al Newburn H-23
2,440.00 to 2,450.00	100% Claystone gray brown, rarely very light green and light gray, firm, blocky in part, slightly amorphous, silty in part, common trace glauconite.
2,450.00 to 2,460.00	100% Claystone gray, slightly greenish, firm to blocky, silty in part, trace glauconite.
2,460.00 to 2,470.00	100% Claystone gray, slightly greenish, trace light gray, firm to blocky, silty in part, trace glauconite.
2,470.00 to 2,480.00	100% Claystone medium gray and rarely light gray, firm to blocky, amorphous in part, rare trace fine to medium grained glauconitic sandstone.
2,480.00 to 2,490.00	100% Claystone medium gray and rarely light gray, firm to blocky, amorphous in part, trace calcareous.
2,490.00 to 2,500.00	100% Claystone medium gray, firm to blocky, amorphous in part, rare trace fine grained glauconitic sandstone.
2,500.00 to 2,510.00	100% Claystone medium gray, firm to soft, amorphous, trace carbonaceous flakes, silty in part.
2,510.00 to 2,520.00	95% Claystone medium gray, firm to soft, amorphous, trace carbonaceous flakes, silty, trace fine grained sandstone.
	5% Limestone light grayish white to beige, partly greenish, firm, lime mudstone, crumbly, argillaceous, trace sand grains.
2,520.00 to 2,530.00	 Claystone gray, firm to soft in part, amorphous, slightly silty. Limestone beige to gray white and greenish in part, lime mudstone locally becoming partly microcrystalline, crumbly to firm and slightly hard in part, argillaceous, minor clear calcite.
2,530.00 to 2,540.00	 80% Claystone gray, firm and blocky, amorphous, slightly silty, common trace disseminated pyrite, trace carbonaceous flakes. 20% Limestone beige to rarely gray white, lime mudstone locally becoming partly microcrystalline, crumbly to firm and slightly hard in part, argillaceous, trace chalky, trace carbonaceous material.
2,540.00 to 2,550.00	 85% Claystone gray, firm and blocky, amorphous, slightly silty, common trace disseminated pyrite, trace carbonaceous flakes. 15% Limestone beige, lime mudstone locally becoming partly microcrystalline, crumbly to firm and slightly hard in part, argillaceous, trace chalky, trace carbonaceous material.
2,550.00 to 2,560.00	 90% Claystone gray and light gray, rare green, firm and blocky, amorphous, silty in part, common trace pyrite, thin limestone laminae. 10% Limestone beige, lime mudstone, crumbly to firm and slightly hard in part, argillaceous, trace chalky, trace carbonaceous material.
2,560.00 to 2,570.00	 Claystone gray, slightly greenish in part, firm and partly blocky, amorphous, slightly silty, commonly pyritic with thin limestone stringers and laminae. Limestone beige, mudstone to partly very fine packstone, crumbly to slightly hard, argillaceous in part, trace carbonaceous.
2,570.00 to 2,580.00	 Claystone Light gray to medium gray, slightly greenish and brownish in part, firm, amorphous, silty, commonly pyritic, calcareous in part. Limestone beige, mudstone to partly very fine packstone, crumbly to slightly hard, argillaceous in part, trace carbonaceous.
·	

2,580.00 to 2,590.00	100% Claystone light gray to medium gray, slightly greenish in part, firm and amorphous, minor limestone stringers becoming calcareous in part.
2,590.00 to 2,600.00	100% Claystone light gray, slightly greenish in part, firm and amorphous, calcareous to marly, trace pyritic.
2,600.00 to 2,610.00	100% Claystone light gray and partly brown, firm and amorphous, calcareous to marly, minor beige limestone stringers.
2,610.00 to 2,620.00	100% Claystone light gray and partly brown, firm and amorphous, calcareous to marly, minor beige limestone stringers.
2,620.00 to 2,630. 00	100% Claystone light to medium gray, partly brown, soft to firm, amorphous to subblocky, calcareous to marly, trace disseminated pyrite, minor beige limestone stringers.
2,630.00 to 2,640.00	100% Claystone light to medium gray, gray green, partly brown, soft to firm, amorphous to subblocky, calcareous to marly, minor beige limestone stringers.
2,640.00 to 2,650.00	100% Claystone light to medium gray, gray green, partly brown, soft to firm, amorphous to subblocky, calcareous to marly, minor beige limestone stringers.
2,650.00 to 2,660.00	100% Claystone light to medium gray, gray green, gray brown, firm, amorphous to subblocky, calcareous to marly, fine disseminated pyrite, minor beige limestone stringers.
2,660.00 to 2,670.00	100% Claystone light to medium gray, gray green, gray brown, firm, subblocky, calcareous to marly, fine disseminated pyrite, minor beige limestone stringers, locally grading to marlstone.
2,670.00 to 2,680.00	100% Claystone light to medium gray, gray brown, firm, subblocky, very calcareous to marly, fine disseminated pyrite, minor beige limestone stringers, locally grading to marlstone.
2,680.00 to 2,690.00	100% Claystone light to medium gray, gray brown, firm, subblocky, very calcareous to marly, fine disseminated pyrite, minor beige limestone stringers, locally grading to marlstone.
2,690.00 to 2,700.00	100% Claystone predominately medium gray, subblocky, firm to brittle, very calcareous to marly, fine disseminated pyrite, trace fine carbonaceous specks, minor beige limestone stringers, locally grading to marlstone.
2,700.00 to 2,710.00	100% Claystone predominately medium gray, subblocky, firm to brittle, very calcareous to marly, fine disseminated pyrite, trace fine carbonaceous specks, minor beige limestone stringers, locally grading to marlstone.
2,710.00 to 2,720.00	100% Claystone light to medium gray, gray green, gray brown, subblocky, firm to brittle, very calcareous to marly, fine disseminated pyrite, locally grading to marlstone.
2,720.00 to 2,730.00	 Claystone light to medium gray, gray green, gray brown, subblocky, firm to brittle, very calcareous to marly, fine disseminated pyrite, locally grading to marlstone. Limestone beige to gray white, firm to hard, mudstone, locally microcrystalline.
2,730.00 to 2,740.00	100% Claystone very light gray to medium gray, gray green, amorphous to subblocky, soft to firm, very calcareous to marly, fine disseminated pyrite, trace glauconite laminae, beige limestone stringers, grading to marlstone.

" OIL LIBEOL , LEOPOLE	Well	History	Report
------------------------	------	---------	--------

Chevron et al Newburn H-23

2,740.00 to 2,750.00	100% Claystone very light gray to medium gray, gray green, amorphous to subblocky, soft to firm, very calcareous to marly, fine disseminated pyrite, beige limestone stringers, grading to marlstone.
2,750.00 to 2,760.00	100% Claystone very light gray white to medium gray, gray green, amorphous to subblocky, soft to firm, very calcareous to marly, fine disseminated pyrite and loose pyrite, trace loose very fine quartz grains, beige limestone stringers, grading to marlstone.
2,760.00 to 2,770.00	 Marlstone very light gray white, soft, amorphous, fine disseminated pyrite and pyrite laminae. Claystone light gray to medium gray, amorphous to subblocky, soft to firm, very calcareous, fine disseminated pyrite, grading to marlstone. Limestone beige to gray white, firm to hard, btit to crumbly, mudstone, locally microcrystalline.
2,770.00 to 2,780.00	 Limestone very light greenish gray, soft to firm, brittle, amorphous to subblocky, mudstone, locally packstone, very fine pyrite laminae, dense, no shows. Claystone light gray to medium gray, amorphous to subblocky, soft to firm, very calcareous, fine disseminated pyrite, grading to marlstone. Marlstone very light gray white, soft, amorphous, fine disseminated pyrite and pyrite laminae.
2,780.00 to 2,790.00	 Limestone very light greenish gray, soft to firm, brittle, amorphous to subblocky, mudstone, locally packstone, very fine pyrite laminae, dense, no shows. Claystone light gray to medium gray, amorphous to subblocky, soft to firm, very calcareous, fine disseminated pyrite, grading to marlstone. Marlstone very light gray white, soft, amorphous, fine disseminated pyrite and pyrite laminae.
2,790.00 to 2,800.00	 Limestone light gray white and slightly greenish, firm to crumbly, mudstone, locally grading to marlstone with minor claystone stringers and thin interbeds. Claystone gray brown, firm, calcareous.
2,800.00 to 2,810.00	100% Limestone light gray white and slightly greenish, firm to crumbly, mudstone, locally grading to marlstone with minor claystone stringers.
2,810.00 to 2,820.00	100% Limestone gray white, greenish in part, slightly hard to crumbly mudstone, argillaceous to marly, locally interbedded with gray brown claystone.
2,820.00 to 2,830.00	100% Limestone gray white, greenish in part, slightly hard to crumbly mudstone, argillaceous to marly, locally interbedded with gray brown claystone.
2,830.00 to 2,840.00	100% Limestone very light greenish gray to gray white, mudstone, slightly hard, argillaceous to marly, rare claystone stringer.
2,840.00 to 2,850.00	60% Claystone light brown, firm to amorphous, slightly to moderately calcareous. 40% Limestone very light greenish gray to gray white, mudstone, slightly hard, argillaceous to marly, rare claystone stringer.
2,850.00 to 2,860.00	 80% Claystone medium gray and brown, firm to blocky, silty, calcareous to marly in part, common trace glauconite and pyritic in part. 20% Limestone light gray green to gray white, firm to slightly hard, argillaceous mudstone, rarely grading to packstone, interbeds in claystone.

2,860.00 to 2,870.00	90% Claystone medium gray and brown, firm to blocky, silty, calcareous to marly in part,
	common trace glauconite and pyritic in part. 10% Limestone light gray green to gray white, firm to slightly hard, argillaceous mudstone, rarely grading to packstone, interbeds in claystone.
2,870.00 to 2,880.00	60% Limestone light gray green to gray white, firm to slightly hard, argillaceous mudstone, rarely grading to packstone.
	40% Claystone medium gray and brown, firm to blocky, silty, calcareous to marly in part, common trace glauconite and pyritic in part.
2,880.00 to 2,890.00	100% Claystone medium gray, subblocky, firm to moderately hard, brittle, very calcareous, common very fine disseminated pyrite, glauconite grains and carbonaceous specks, grading to shale.
2,890.00 to 2,900.00	100% Claystone medium gray, gray brown, subblocky, firm to moderately hard, brittle, very calcareous, common very fine disseminated pyrite + loose pyrite, glauconite grains, carbonaceous specks, locally grading to shale.
2,900.00 to 2,910.00	100% Claystone medium gray, firm to blocky, calcareous, grading to shale in part, commonly pyritic, trace light gray green limestone stringers.
2,910.00 to 2,920.00	75% Claystone medium gray, firm to blocky, calcareous, grading to shale in part, commonly pyritic, trace light gray green limestone stringers.
	25% Siltstone light gray, partly greenish, argillaceous, calcareous, glauconitic.
2,920.00 to 2,930.00	100% Claystone medium gray to light gray, firm to blocky and slightly hard, calcareous to marly, minor limestone stringers, common pyrite.
2,930.00 to 2,940.00	100% Claystone medium gray to light gray, firm to blocky and slightly hard, calcareous to marly, minor limestone stringers, common pyrite.
2,940.00 to 2,950.00	100% Claystone gray, firm to blocky, slightly silty, common glauc, calcareous locally grading to marlstone, minor beige limestone stringers.
2,950.00 to 2,960.00	100% Claystone medium gray, firm to partly blocky, calcareous to marly in part, minor beige limestone stringers, common trace glauconite.
2,960.00 to 2,970.00	100% Claystone medium gray, firm to partly blocky, calcareous to marly in part, minor beige limestone stringers, common trace glauconite.
2,970.00 to 2,980.00	100% Claystone medium gray, firm to partly blocky, calcareous to marly in part, minor beige limestone stringers, common trace glauconite, trace pyrite.
2,980.00 to 2,990.00	100% Claystone medium gray, firm to blocky in part, calcareous to marly, minor beige limestone stringers, very abundant pyrite nodules.
2,990.00 to 3,000.00	100% Claystone medium gray, firm, blocky in part, calcareous to marly, trace pyrite.
3,000.00 to 3,010.00	100% Claystone medium gray, firm, blocky in part, calcareous to marly, trace pyrite.
3,010.00 to 3,020.00	100% Claystone medium gray, firm, blocky in part, calcareous to marly, trace pyrite.

Chevron et al Ne	wburn H-23
------------------	------------

Well	History	Report
------	---------	--------

3,020.00 to 3,030.00	50% Claystone brownish gray, firm, silty in part, trace pyrite, common carbonaceous flakes,
	calcareous to marly. 50% Limestone beige to tan, crumbly, mudstone, common carbonaceous streaks and flakes.
3,030.00 to 3,040.00	75% Claystone brownish gray, firm, silty in part, trace pyrite, common carbonaceous flakes, calcareous to marly.
	25% Limestone beige to tan, crumbly, mudstone, common carbonaceous streaks and flakes.
3,040.00 to 3,050.00	85% Claystone medium gray, firm to blocky in part, calcareous to occasionally marly, silty grading locally to siltstone, trace glauconite, common carbonaceous flakes and streaks, interbedded with limestone.
	15% Limestone beige, speckled black, crumbly mudstone, occasionally becoming very fine packstone, rarely microcrystalline in part, common carbonaceous material, slightly argillaceous.
3,050.00 to 3,060.00	95% Claystone medium gray, firm to blocky in part, calcareous to occasionally marly, silty grading locally to siltstone, trace glauconite, common carbonaceous flakes and streaks, interbedded with limestone.
	5% Limestone beige, speckled black, crumbly mudstone, occasionally becoming very fine packstone, rarely microcrystalline in part, common carbonaceous material, slightly argillaceous.
3,060.00 to 3,070.00	90% Claystone medium gray, firm to blocky in part, calcareous to occasionally marly, silty grading locally to siltstone, trace glauconite, common carbonaceous flakes and streaks, interbedded with limestone.
	10% Limestone beige, speckled black, crumbly mudstone, occasionally becoming very fine packstone, rarely microcrystalline in part, common carbonaceous material, slightly argillaceous, trace pyrite.
3,070.00 to 3,080.00	100% Claystone medium gray, firm and blocky, calcareous, silty grading locally to argillaceous siltstone, minor beige limestone stringers, pyritic in part.
3,080.00 to 3,090.00	100% Claystone medium gray, firm and blocky, calcareous, silty grading locally to argillaceous siltstone, occasional very fine argillaceous sandstone stringer, minor beige limestone stringers, pyritic in part.
3,090.00 to 3,100.00	100% Claystone medium gray, firm and blocky, calcareous, silty grading locally to argillaceous siltstone, minor beige limestone stringers, pyritic in part.
3,100.00 to 3,110.00	90% Claystone medium gray, firm to partly blocky, calcareous grading occasionally to argillaceous siltstone, minor glauconite, common trace carbonaceous flakes streaks, trace pyrite, rare trace siderite.
	10% Limestone beige to tan, speckled black with carbonaceous matter, crumbly, mudstone.
3,110.00 to 3,120.00	100% Claystone medium gray, firm to partly blocky, calcareous grading occasionally to argillaceous siltstone, minor glauconite, common trace carbonaceous flakes streaks, trace pyrite, rare trace siderite, minor limestone stringers.
3,120.00 to 3,130.00	100% Claystone medium gray, firm to partly blocky, calcareous grading occasionally to argillaceous siltstone, minor glauconite, common trace carbonaceous flakes streaks, trace pyrite, rare trace siderite, rare limestone stringer.
	100% Claystone medium gray, firm, blocky, calcareous, silty, trace pyrite, rare limestone stringe

3,140.00 to 3,150.00	100% Claystone medium gray, firm, blocky, calcareous, silty, trace pyrite, minor beige limestone stringers, trace glauconite.
3,150.00 to 3,160.00	100% Claystone medium gray, firm, blocky, calcareous, silty, trace pyrite, minor beige limestone stringers.
3,160.00 to 3,170.00	100% Claystone medium gray, firm, bky, calcareous, silty grading locally to siltstone, common glauconite, rare limestone stringer.
3,170.00 to 3,180.00	100% Claystone medium gray, firm, bky, calcareous, silty grading locally to siltstone, common glauconite, trace pyrite.
3,180.00 to 3,190.00	100% Claystone medium gray, firm, blocky, calcareous, silty grading to argillaceous siltstone, pyritic, locally glauconitic, occasional very fine sandstone stringer, trace limestone stringer.
3,190.00 to 3,200.00	100% Claystone medium gray, firm, blocky, calcareous, silty grading to argillaceous siltstone, pyritic, locally glauconitic, occasional very fine sandstone stringer, trace limestone stringer.
3,200.00 to 3,210.00	100% Claystone medium gray, firm, blocky, calcareous, silty grading to argillaceous siltstone, pyritic, locally glauconitic, occasional very fine sandstone stringer, trace limestone stringer.
3,210.00 to 3,220.00	100% Claystone medium gray, firm to blocky in part, rarely platy, calcareous, silty grading to and partly interbedded with siltstone, rare trace sandy, trace limestone stringers.
3,220.00 to 3,230.00	 80% Claystone medium gray, firm to blocky in part, rarely platy, calcareous, silty grading to siltstone, rare trace sandy, trace limestone stringers. 20% Siltstone gray, firm to friable, argillaceous, calcareous, glauconitic in part.
3,230.00 to 3,240.00	 Claystone medium gray, firm to blocky, moderately calcareous, silty grading to siltstone in part, common trace carbonaceous flakes. Limestone beige, moderately hard to brittle in part, mudstone, argillaceous, partly pyritic, common carbonaceous specks.
3,240.00 to 3,250.00	 Claystone medium gray, firm to blocky, moderately calcareous, silty grading to siltstone in part, common trace carbonaceous flakes, trace glauconite, occasional pyrite. Limestone beige, moderately hard to brittle in part, mudstone, argillaceous, partly pyritic, common carbonaceous specks.
3,250.00 to 3,260.00	100% Claystone medium gray, firm to blocky, moderately calcareous, silty grading to siltstone in part, common trace carbonaceous flakes, trace glauconite, occasional pyrite, minor limestone stringers.
3,260.00 to 3,270.00	100% Claystone medium gray, firm to blocky, moderately calcareous, silty grading to siltstone in part, common trace carbonaceous flakes, trace glauconite, occasional pyrite, minor limestone stringers.
3,270.00 to 3,280.00	100% Claystone medium gray, firm to blocky, moderately calcareous, silty, occasionally grading to and interbedded with argillaceous siltstone, common thin beige limestone stringers.

3,280.00 to 3,290.00	90% Claystone medium gray, firm to blocky, moderately calcareous, silty, occasionally grading to and interbedded with argillaceous siltstone.
	10% Limestone beige to tan in part, partly speckled black, mudstone, modlt hard to brittle, common carbonaceous streaks and specks.
3,290.00 to 3,300.00	100% Claystone medium gray, firm to blocky, moderately calcareous, silty, occasionally grading to and interbedded with argillaceous siltstone, common thin beige limestone stringers.
3,300.00 to 3,310.00	 90% Claystone medium gray, firm to blocky, moderately calcareous, silty, occasionally grading to and interbedded with argillaceous siltstone. 10% Limestone beige to tan in part, partly speckled black, mudstone, modlt hard to brittle,
	common carbonaceous streaks and specks.
3,310.00 to 3,320.00	100% Claystone medium gray, firm to blocky, moderately calcareous, silty, occasionally grading to and interbedded with argillaceous siltstone, common thin beige limestone stringers.
3,320.00 to 3,330.00	100% Claystone medium gray, firm to blocky, moderately calcareous, silty, occasionally grading to and interbedded with argillaceous siltstone, common thin beige limestone stringers.
3,330.00 to 3,340.00	100% Claystone medium gray, firm to blocky, moderately calcareous, silty, occasionally grading to and interbedded with argillaceous siltstone, common thin beige limestone stringers.
3,340.00 to 3,350.00	100% Claystone medium gray, blocky to platy in part, weakly calcareous, silty, rare limestone stringer.
3,350.00 to 3,360.00	100% Claystone medium gray, blocky, weakly calcareous, silty grading to siltstone, minor limestone stringers.
3,360.00 to 3,370.00	100% Claystone medium gray, blocky, weakly calcareous, silty and commonly grading to argillaceous siltstone, trace pyrite, trace carbonaceous flakes, rare limestone stringer.
3,370.00 to 3,380.00	100% Claystone medium gray, blocky, weakly calcareous, silty and commonly grading to argillaceous siltstone, trace pyrite, trace carbonaceous flakes, minor limestone stringer.
3,380.00 to 3,390.00	90% Claystone medium gray, blocky, weakly calcareous, silty and commonly grading to argillaceous siltstone, trace pyrite, trace carbonaceous flakes.
•	10% Limestone beige to tan, speckled black, moderately hard to brittle, mudstone becoming partly microcrystalline in part, common carbonaceous specks.
3,390.00 to 3,400.00	100% Claystone medium gray, weakly to moderately calcareous, silty grading to and interbedded with argillaceous siltstone, trace pyrite, occasional limestone stringers, common trace carbonaceous specks.
3,400.00 to 3,410.00	100% Claystone medium gray, weakly to moderately calcareous, silty grading to and interbedded with argillaceous siltstone, trace pyrite, occasional limestone stringers, common trace carbonaceous specks.
3,410.00 to 3,420.00	100% Claystone medium gray, weakly to moderately calcareous, silty grading to and interbedded with argillaceous siltstone, trace pyrite, occasional limestone stringers, common trace carbonaceous specks.
3,420.00 to 3,430.00	100% Claystone medium gray, firm to blocky, weakly to moderately calcareous, silty grading to argillaceous siltstone interbeds and stringers, trace pyrite and common trace carbonaceous specks, minor limestone stringers.

3,430.00 to 3,440.00	100% Claystone medium gray, firm to blocky, weakly to moderately calcareous, silty grading to argillaceous siltstone interbeds and stringers, trace pyrite and common trace carbonaceous specks, minor limestone stringers
3,440.00 to 3,450.00	100% Claystone medium gray, firm to blocky, weakly to moderately calcareous, silty grading to argillaceous siltstone interbeds and stringers, trace pyrite and common trace carbonaceous specks, minor limestone stringers
3,450.00 to 3,460.00	100% Claystone medium gray, firm to blocky, weakly to moderately calcareous, silty grading to argillaceous siltstone interbeds and stringers, trace pyrite and common trace carbonaceous specks, minor limestone stringers
3,460.00 to 3,470.00	100% Claystone medium gray, firm to blocky and partly platy, calcareous to dolomitic, silty grading to siltstone, minor beige to tan dolomitic limestone stringers.
3,470.00 to 3,480.00	100% Claystone medium gray, firm to blocky and partly platy, calcareous to dolomitic, silty grading to siltstone, minor beige to tan dolomitic limestone stringers, trace pyrite.
3,480.00 to 3,490.00	100% Claystone medium gray, firm to blocky and partly platy, dolomitic, silty grading to siltstone, minor dolomite stringers.
3,490.00 to 3,500.00	100% Claystone medium gray, firm to blocky and partly platy, dolomitic, silty grading to siltstone, minor dolomite stringers.
3,500.00 to 3,510.00	100% Claystone medium gray, blocky and platy in part, dolomitic, silty grading to siltstone, minor dolomite stringers.
Change to 5 meter drill	cuttings sample interval
Change to 5 meter drill 3,510.00 to 3,515.00	cuttings sample interval 100% Claystone medium gray, blocky and platy in part, dolomitic, silty grading to siltstone, minor dolomite stringers.
•	100% Claystone medium gray, blocky and platy in part, dolomitic, silty grading to siltstone,
3,510.00 to 3,515.00	 100% Claystone medium gray, blocky and platy in part, dolomitic, silty grading to siltstone, minor dolomite stringers. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to
3,510.00 to 3,515.00 3,515.00 to 3,520.00	 100% Claystone medium gray, blocky and platy in part, dolomitic, silty grading to siltstone, minor dolomite stringers. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to siltstone, partly glauconitic and carbonaceous. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to
3,510.00 to 3,515.00 3,515.00 to 3,520.00 3,520.00 to 3,525.00	 100% Claystone medium gray, blocky and platy in part, dolomitic, silty grading to siltstone, minor dolomite stringers. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to siltstone, partly glauconitic and carbonaceous. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to siltstone, partly glauconitic and carbonaceous. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to siltstone, partly glauconitic and carbonaceous, common thin siltstone laminae, occasional
3,510.00 to 3,515.00 3,515.00 to 3,520.00 3,520.00 to 3,525.00 3,525.00 to 3,530.00	 100% Claystone medium gray, blocky and platy in part, dolomitic, silty grading to siltstone, minor dolomite stringers. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to siltstone, partly glauconitic and carbonaceous. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to siltstone, partly glauconitic and carbonaceous. 100% Claystone medium gray, blocky to platy in part, calcareous in part, silty grading to siltstone, partly glauconitic and carbonaceous, common thin siltstone laminae, occasional sand grain, minor limestone stringers. 100% Claystone medium gray, blocky to slightly amorphous, moderately calcareous, silty grading to siltstone. common carbonaceous, flakes, minor siltstone interbeds, occasional limestone

Well	History	Report

Chevron et al Newburn H-23

3,545.00 to 3,550.00	95% Claystone medium gray, blocky to slightly amorphous, moderately calcareous, silty grading
	to siltstone. common carbonaceous, flakes, occasional gray white siltstone stringers. 5% Limestone tan, mudstone, argillaceous in part, brittle, common carbonaceous specks and streaks, interbeds in claystone.
3,550.00 to 3,555.00	90% Claystone medium gray, blocky to platy in part, slightly amorphous, moderately calcareous, silty, common trace carbonaceous flakes, occasional siltstone stringers, trace pyrite.
	10% Limestone tan, mudstone, moderately hard in part to brittle, carbonaceous in part, slightly argillaceous, thin interbeds in claystone.
3,555.00 to 3,560.00	100% Claystone medium gray, blocky to platy in part, slightly amorphous, moderately calcareous, silty, common trace carbonaceous flakes, occasional siltstone stringers, trace pyrite, minor thin limestone stringers.
3,560.00 to 3,565.00	100% Claystone medium gray, firm to blocky, amorphous in part, commonly silty with occasional siltstone laminae and thin interbeds, minor limestone stringers, trace chert fragments.
3,565.00 to 3,570.00	100% Claystone medium gray, firm to blocky, amorphous in part, partly calcareous, commonly silty with occasional siltstone laminae and thin interbeds, minor limestone stringers.
3,570.00 to 3,575.00	100% Claystone medium gray, firm to blocky, amorphous in part, partly calcareous, commonly silty with occasional siltstone laminae and thin interbeds, minor dolomitic limestone stringers.
3,575.00 to 3,580.00	100% Claystone medium gray, firm to blocky, amorphous in part, partly calcareous, commonly silty with occasional siltstone laminae and thin interbeds, minor dolomitic limestone stringers.
3,580.00 to 3,585.00	90% Claystone medium gray, firm to blocky in part, slightly to moderately calcareous, silty grading to siltstone, trace pyrite, common carbonaceous flakes, rare trace possible shell fragment.
	10% Limestone tan, argillaceous mudstone, occasionally becoming cryptocrystalline, brittle to partly moderately hard, common carbonaceous specks and streaks.
3,585.00 to 3,590.00	100% Claystone medium gray, firm to blocky in part, slightly to moderately calcareous, silty grading to siltstone, trace pyrite, common carbonaceous flakes.
3,590.00 to 3,595:00	95% Claystone medium gray, firm to blocky in part, slightly to moderately calcareous, silty grading to siltstone, trace pyrite, common carbonaceous flakes.
	5% Limestone tan, argillaceous mudstone, occasionally becoming cryptocrystalline, brittle to partly moderately hard, common carbonaceous specks and streaks.
3,595.00 to 3,600.00	100% Claystone medium gray, firm to blocky in part, slightly to moderately calcareous, silty grading to siltstone, trace pyrite, common carbonaceous flakes.
3,600.00 to 3,605.00	100% Claystone medium gray, firm to partly amorphous, silty with common siltstone stringers, weakly calcareous to dolomitic, trace glauconite, minor dolomitic limestone stringers.
3,605.00 to 3,610.00	100% Claystone medium gray, firm to partly amorphous, silty with common siltstone stringers, weakly calcareous to dolomitic, trace glauconite, minor dolomite stringers.
3,610.00 to 3,615.00	100% Claystone medium gray, firm to partly amorphous, silty with common siltstone stringers, weakly calcareous to dolomitic, trace glauconite, minor dolomite stringers.

3,615.00 to 3,620.00	95% Claystone medium gray, firm to blocky in part, dolomitic, silty with siltstone stringers. 5% Dolomite tan, mudstone to packstone in part, common cryptocrystalline fragments, brittle to hard in part, commonly argillaceous grading locally to marlstone.
3,620.00 to 3,625.00	100% Claystone medium gray, firm and partly blocky, small\dolomitic, silty with siltstone, common minor dolomite stringers and laminae.
3,625.00 to 3,630.00	 95% Claystone medium gray, firm to blocky and amorphous in part, dolomitic, silty with siltstone stringers, common dolomite stringers and thin laminae. 5% Dolomite tan to light brown in part, mudstone to cryptocrystalline in part, brittle to locally moderately hard and dense, commonly argillaceous grading to marlstone in part, common carbonaceous flakes and streaks.
3,630.00 to 3,635.00	100% Claystone medium gray, firm to blocky and amorphous in part, dolomitic, silty with siltstone stringers, common dolomite stringers and thin laminae.
3,635.00 to 3,640.00	100% Claystone medium gray, firm to blocky and amorphous in part, dolomitic, silty with siltstone stringers, common dolomite stringers and thin laminae.
3,640.00 to 3,645.00	100% Claystone medium gray, firm to blocky and amorphous in part, dolomitic, silty with siltstone stringers, common dolomite stringers and thin laminae.
3,645.00 to 3,650.00	100% Claystone medium gray, blocky, amorphous in part, dolomitic, silty, minor dolomite stringers.
3,650.00 to 3,655.00	100% Claystone medium gray, blocky, amorphous in part, dolomitic, silty, minor dolomite stringers.
3,655.00 to 3,660.00	100% Claystone medium gray, blocky, amorphous in part, dolomitic, silty, minor dolomite stringers.
3,660.00 to 3,665.00	100% Claystone medium gray, blocky, silty commonly grading to siltstone, common carbonaceous specks, dolomitic in part with minor dolomite stringers and laminae.
3,665.00 to 3,670.00	100% Claystone medium gray, blocky, silty commonly grading to siltstone, common carbonaceous specks, dolomitic in part with minor dolomite stringers and laminae.
3,670.00 to 3,675.00	100% Claystone medium gray, blocky, silty commonly grading to siltstone, common carbonaceous specks, dolomitic in part with minor dolomite stringers and laminae, trace glauconite.
3,675.00 to 3,680.00	 90% Claystone medium gray, firm to blocky in part, partly dolomitic, silty with minor siltstone stringers, common carbonaceous specks. 10% Dolomite tan, mudstone with frequent cryptocrystalline fragments and grains, moderately hard to brittle, argillaceous, trace pyrite, trace calcite veins, common carbonaceous streaks.
3,680.00 to 3,685.00	 Claystone medium gray, firm to blocky in part, partly dolomitic, silty with minor siltstone stringers, common carbonaceous specks. Dolomite tan, mudstone with frequent cryptocrystalline fragments and grains, moderately hard to brittle, argillaceous, trace pyrite, trace calcite veins, common carbonaceous streaks.
3,685.00 to 3,690.00	100% Claystone medium gray, firm to blocky in part, partly dolomitic, silty with minor siltstone stringers, common carbonaceous specks with minor dolomite stringers and thinlaminae.

3,690.00 to 3,695.00	100% Claystone medium gray, firm to blocky in part, partly dolomitic, silty with minor siltstone stringers, common carbonaceous specks with minor dolomite stringers and thin laminae.
3,695.00 to 3,700.00	100% Claystone medium gray, blocky, slightly platy, silty grading to argillaceous siltstone, dolomitic, common dolomite stringers.
3,700.00 to 3,705.00	 Claystone medium gray, blocky, slightly platy, silty grading to argillaceous siltstone, dolomitic. Dolomite tan to light brown in part, mudstone to packstone with common cryptocrystalline grains or fragments, common carbonaceous streaks.
3,705.00 to 3,710.00	100% Claystone medium gray, blocky, slightly platy, silty grading to argillaceous siltstone, dolomitic, occasional dolomite stringers, common gray argillaceous siltstone stringers or interbeds.
3,710.00 to 3,715.00	 80% Claystone medium gray, soft, amorphous, silty, trace pyrite, weakly dolomitic, occasional dolomite stringer. 20% Siltstone light gray, soft, argillaceous, trace carbonaceous specks.
3,715.00 to 3,720.00	100% Claystone medium gray, firm to partly blocky, slightly dolomitic, silty with minor siltstone interbeds, trace pyrite, occasional dolomite stringers.
3,720.00 to 3,725.00	100% Claystone medium gray, firm to partly blocky, slightly dolomitic, silty with minor siltstone interbeds, trace pyrite, occasional dolomite stringers.
3,725.00 to 3,730.00	100% Claystone medium gray, firm to partly blocky, slightly dolomitic, silty with minor siltstone interbeds, trace pyrite, occasional dolomite stringers.
3,730.00 to 3,735.00	 85% Claystone medium gray, firm to partly blocky, slightly dolomitic, silty with minor siltstone interbeds, trace pyrite. 15% Dolomite tan to brown in part, msdt with common cryptocrystalline fragments or grains, common carbonaceous streaks.
3,735.00 to 3,740.00	 Claystone medium gray, firm to partly blocky, slightly dolomitic, silty with minor siltstone interbeds, trace pyrite, occasional dolomite stringers. Dolomite tan to brown, mudstone to partly cryptocrystalline, common carbonaceous streaks.
3,740.00 to 3,745.00	100% Claystone medium gray, firm to partly blocky, slightly dolomitic, silty with minor siltstone interbeds, trace pyrite, minor dolomite stringers.
3,745.00 to 3,750.00	 Claystone medium gray, blocky, silty with siltstone stringers, weakly dolomitic, common disseminated pyrite. Dolomite tan to brown, mudstone to partly cryptocrystalline, brittle to partly moderately hard, argillaceous in part, common carbonaceous streaks.
3,750.00 to 3,755.00	 90% Claystone medium gray, blocky, silty with siltstone stringers, weakly dolomitic, common disseminated pyrite. 10% Dolomite tan to brown, mudstone to partly cryptocrystalline, brittle to partly moderately hard, argillaceous in part, common carbonaceous streaks.

·	
3,755.00 to 3,760.00	 Claystone medium gray, blocky, silty with siltstone stringers, weakly dolomitic, occasional disseminated pyrite. Dolomite tan to brown, mudstone to partly cryptocrystalline, brittle to partly moderately hard, argillaceous in part, common carbonaceous streaks.
3,760.00 to 3,765.00	 Claystone medium gray, blocky, silty with siltstone stringers, weakly dolomitic, occasional disseminated pyrite. Dolomite tan to brown, mudstone to partly cryptocrystalline, brittle to partly moderately hard, argillaceous in part, common carbonaceous streaks.
3,765.00 to 3,770.00	100% Claystone medium gray, blocky, silty, partly dolomitic, minor siltstone stringers and common dolomite stringers.
3,770.00 to 3,775.00	100% Claystone medium gray, blocky, silty, partly dolomitic, minor siltstone stringers and common dolomite stringers.
3,775.00 to 3,780.00	100% Claystone medium gray, blocky, silty, partly dolomitic, minor siltstone stringers and common dolomite stringers.
3,780.00 to 3,785.00	100% Claystone medium gray, firm to partly blocky and occasionally soft, silty, slightly dolomitic, common trace carbonaceous specks, grading locally to siltstone, minor dolomite stringers.
3,785.00 to 3,790.00	100% Claystone medium gray, firm to partly blocky and occasionally soft, silty, slightly dolomitic, common trace carbonaceous specks, grading locally to siltstone, minor dolomite stringers, trace pyrite.
3,790.00 to 3,795.00	100% Claystone medium gray, firm to partly blocky, silty, slightly dolomitic, common trace carbonaceous specks, grading locally to siltstone, minor dolomite stringers.
3,795.00 to 3,800.00	 Claystone medium gray, blocky to platy in part, moderately to weakly dolomitic, silty, common carbonaceous specks, occasionally grading to siltstone. Dolomite brown to tan, predominately cryptocrystalline, partly mudstone, moderately hard in part, to brittle, common carbonaceous streaks.
3,800.00 to 3,805.00	 90% Claystone medium gray, blocky to platy in part, moderately to weakly dolomitic, silty, common carbonaceous specks, occasionally grading to siltstone. 10% Dolomite
3,805.00 to 3,810.00	100% Claystone medium gray, blocky to platy in part, moderately to weakly dolomitic, silty, common carbonaceous specks, occasionally grading to siltstone, minor dolomite stringers.
3,810.00 to 3,815.00	100% Claystone medium gray, blocky to platy in part, moderately to weakly dolomitic, silty, common carbonaceous specks, occasionally grading to siltstone, minor dolomite stringers.
3,815.00 to 3,820.00	100% Claystone medium gray, blocky, silty, dolomitic in part, common trace carbonaceous specks, minor dolomite stringers.
3,820.00 to 3,825.00	100% Claystone medium gray, blocky, silty, dolomitic in part, common trace carbonaceous specks, minor dolomite stringers.
3,825.00 to 3,830.00	100% Claystone medium gray, blocky, silty, dolomitic in part, common trace carbonaceous specks, minor dolomite stringers.

Chevron	et al	Newburn	H-23
CITCALOIT	Ct ai	11CW DUI 11	11-23

Well History Report	Well	History	Report
---------------------	------	---------	--------

3,830.00 to 3,835.00	100% Claystone medium gray, firm to blocky in part, weakly dolomitic, silty, common carbonaceous specks, minor dolomitic mudstone stringers.
3,835.00 to 3,840.00	100% Claystone medium gray, firm to blocky in part, weakly dolomitic, silty, common carbonaceous specks, minor dolomitic mudstone stringers.
3,840.00 to 3,845.00	100% Claystone medium gray, firm to blocky in part, weakly dolomitic, silty, common carbonaceous specks, minor dolomitic mudstone stringers.
3,845.00 to 3,850.00	100% Claystone medium gray, firm to blocky in part, weakly dolomitic, silty, common carbonaceous specks, minor dolomitic mudstone stringers.
3,850.00 to 3,855.00	100% Claystone medium gray, firm to blocky in part, silty, slightly dolomitic, common trace carbonaceous specks, minor dolomite stringers and thin interbeds.
3,855.00 to 3,860.00	100% Claystone medium gray, firm to blocky in part, silty, slightly dolomitic, common trace carbonaceous specks, minor dolomite stringers and thin interbeds.
3,860.00 to 3,865.00	100% Claystone medium gray, firm to blocky in part, silty, slightly dolomitic, common trace carbonaceous specks, minor dolomite stringers and thin interbeds.
3,865.00 to 3,870.00	100% Claystone medium gray, firm to blocky in part, silty, slightly dolomitic, common trace carbonaceous specks, minor dolomite stringers and thin interbeds.
3,870.00 to 3,875.00	100% Claystone medium gray, firm to blocky in part, silty, slightly dolomitic, common trace carbonaceous specks, minor dolomite stringers and thin interbeds.
3,875.00 to 3,880.00	 85% Claystone medium gray, blocky to platy in part, silty, slightly dolomitic, occasional siltstone stringers, common carbonaceous specks. 15% Dolomite tan to beige, mudstone to partly cryptocrystalline, moderately hard to brittle, common carbonaceous streaks, rare trace chert.
3,880.00 to 3,885.00	 80% Claystone medium gray, blocky to platy in part, silty, slightly dolomitic, occasional siltstone stringers, common carbonaceous specks. 10% Dolomite tan to beige, mudstone to partly cryptocrystalline, moderately hard to brittle, common carbonaceous streaks, rare trace chert.
3,885.00 to 3,890.00	100% Claystone medium gray, blocky, silty, slightly dolomitic, carbonaceous specks, occasional siltstone stringers and minor argillaceous dolomite stringers.
3,890.00 to 3,895.00	100% Claystone medium gray, blocky, silty, slightly dolomitic, carbonaceous specks, occasional siltstone stringers and minor argillaceous dolomite stringers.
3,895.00 to 3,900.00	100% Claystone medium gray, blocky, silty, slightly dolomitic, carbonaceous specks, occasional siltstone stringers and minor argillaceous dolomite stringers.
3,900.00 to 3,905.00	100% Claystone medium gray, blocky, silty, slightly dolomitic, carbonaceous specks, occasional siltstone stringers and minor argillaceous dolomite stringers.
3,905.00 to 3,910.00	100% Claystone medium gray, blocky, silty, slightly dolomitic, carbonaceous specks, occasional siltstone stringers and minor argillaceous dolomite stringers.
3,910.00 to 3,915.00	95% Claystone medium gray, blocky, silty, slightly dolomitic, common carbonaceous specks, occasional gray argillaceous siltstone stringers with rare white calcareous very fine sandy siltstone interbeds, trace pyritic fossil burrow.

	5% Dolomite tan to beige, mudstone with common cryptocrystalline fragments and grains, argillaceous grading locally to marlstone.
3,915.00 to 3,920.00	90% Claystone medium gray, blocky, silty, slightly dolomitic, common carbonaceous specks, occasional gray argillaceous siltstone stringers with rare white calcareous very fine sandy siltstone interbeds, trace pyritic fossil burrow.
	10% Dolomite tan to beige, mudstone with common cryptocrystalline fragments and grains, argillaceous grading locally to marlstone.
3,920.00 to 3,925.00	70% Claystone medium gray, blocky, silty, slightly dolomitic, common carbonaceous specks, occasional gray argillaceous siltstone stringers with rare white calcareous very fine sandy siltstone interbeds.
	30% Siltstone off white to light gray, friable, calcareous, argillaceous, slightly sandy. Occasional carbonaceous flakes, rare trace glauconite.
3,925.00 to 3,930.00	75% Claystone medium gray, blocky, silty, slightly dolomitic, common carbonaceous specks, occasional gray argillaceous siltstone stringers with rare white calcareous very fine sandy siltstone interbeds.
	25% Siltstone off white to light gray, friable, calcareous, argillaceous, slightly sandy. Occasional carbonaceous flakes, rare trace glauconite.
3,930.00 to 3,935.00	100% Claystone medium gray, firm to blocky, moderately dolomitic, silty grading locally to siltstone, trace carbonaceous specks, minor beige dolomite stringers,
3,935.00 to 3,940.00	90% Claystone medium gray, firm to blocky, moderately dolomitic, silty grading locally to siltstone, trace carbonaceous specks.
	10% Dolomite beige to tan and brown in part, mudstone to partly cryptocrystalline, brittle to locally hard, argillaceous in part, common trace carbonaceous streaks, trace pyrite.
3,940.00 to 3,945.00	95% Claystone medium gray, firm to blocky, moderately dolomitic, silty grading locally to siltstone, trace carbonaceous specks.
	5% Dolomite beige to tan and brown in part, mudstone to partly cryptocrystalline, brittle to locally hard, argillaceous in part, common trace carbonaceous streaks.
3,945.00 to 3,950.00	95% Claystone medium gray, firm to blocky, moderately dolomitic, silty grading locally to siltstone, trace carbonaceous specks.
	5% Dolomite beige to tan and brown in part, mudstone to partly cryptocrystalline, brittle to locally hard, argillaceous in part, common trace carbonaceous streaks.
3,950.00 to 3,955.00	90% Claystone medium gray, firm to blocky, moderately dolomitic, silty grading locally to siltstone, trace carbonaceous specks.
	10% Dolomite beige to tan and brown in part, mudstone to partly cryptocrystalline, brittle to locally hard, argillaceous in part, common trace carbonaceous streaks.
3,955.00 to 3,960.00	90% Claystone medium gray, firm to blocky, slightly dolomitic, silty, common carbonaceous specks, grading to siltstone in part.
	10% Dolomite tan to beige to partly brown, mudstone, partly cryptocrystalline and microcrystalline, brittle to hard in part, argillaceous locally becoming marly, occasional carbonaceous streak.
3,960.00 to 3,965.00	90% Claystone medium gray, firm to blocky, slightly dolomitic, silty, common carbonaceous specks, grading to siltstone in part.
	10% Dolomite tan to beige to partly brown, mudstone, partly cryptocrystalline and microcrystalline, brittle to hard in part, argillaceous locally becoming marly, occasional carbonaceous streak.

3,965.00 to 3,970.00	100% Claystone medium gray, firm to partly blocky, slightly dolomitic, silty grading to siltstone, rare very fine sandstone stringer, minor argillaceous dolomite stringers grading to dolomitic marlstone.
3,970.00 to 3,975.00	100% Claystone medium gray, firm to partly blocky, slightly dolomitic, silty grading to siltstone, rare very fine sandstone stringer, minor argillaceous dolomite stringers grading to dolomitic marlstone.
3,975.00 to 3,980.00	100% Claystone medium gray, firm to partly blocky, slightly dolomitic, silty grading to siltstone, rare very fine sandstone stringer, minor argillaceous dolomite stringers grading to dolomitic marlstone.
3,980.00 to 3,985.00	100% Claystone medium gray, occasionally light gray, firm to partly blocky, slightly dolomitic, silty grading to siltstone, rare very fine sandstone stringer, minor argillaceous dolomite stringers grading to dolomitic marlstone.
3,985.00 to 3,990.00	100% Claystone brownish gray, rarely light gray, firm to partly blocky, slightly calcareous to non calcareous, silty, trace pyrite, minor siltstone interbeds.
3,990.00 to 3,995.00	100% Claystone brownish gray, rarely light gray, firm to partly blocky, slightly calcareous to non calcareous, silty, trace pyrite, minor siltstone interbeds.
3,995.00 to 4,000.00	100% Claystone brownish gray, rarely light gray, firm to partly blocky, slightly calcareous to non calcareous, silty, trace pyrite, minor siltstone interbeds.
4,000.00 to 4,005.00	100% Claystone brownish gray, firm, blocky in part, silty in part, occasional white calcareous siltstone stringers.
4,005.00 to 4,010.00	100% Claystone brownish gray, firm, blocky in part, silty in part, occasional white calcareous siltstone stringers, occasional trace pyrite.
4,010.00 to 4,015.00	100% Claystone medium gray, brownish in part, firm to blocky, silty, slightly calcareous, minor brown calcareous marlstone, rare white calcareous siltstone stringer.,
4,015.00 to 4,020.00	100% Claystone medium gray, brownish in part, firm to blocky, silty, slightly calcareous, minor brown calcareous marlstone, rare white calcareous siltstone stringer.,
4,020.00 to 4,025.00	100% Claystone medium gray, brownish in part, firm to blocky, silty, slightly calcareous, minor brown calcareous marlstone, rare white calcareous siltstone stringer, slightly elongated cuttings.
4,025.00 to 4,030.00	100% Claystone medium gray, brownish in part, firm to blocky, occasionally slightly splintery, silty, slightly calcareous with occasional calcareous marlstone stringers, trace pyrite.
4,030.00 to 4,035.00	100% Claystone medium gray, brownish in part, firm to blocky, occasionally slightly splintery, silty, slightly calcareous with occasional calcareous marlstone stringers, trace pyrite.
4,035.00 to 4,040.00	100% Claystone medium gray, firm to blocky, silty, slightly calcareous, minor argillaceous calcareous marlstone.
4,040.00 to 4,045.00	100% Claystone medium gray, firm to blocky, silty, slightly calcareous, minor argillaceous calcareous marlstone.
4,045.00 to 4,050.00	100% Claystone medium gray, firm to blocky, silty, slightly calcareous, minor argillaceous calcareous marlstone.

4,050.00 to 4,055.00	100% Claystone medium gray, firm to blocky, silty, slightly calcareous, minor argillaceous calcareous marlstone, occasional white calcareous siltstone stringer.
4,055.00 to 4,060.00	100% Claystone medium gray, partly brownish, rare light gray, firm to blocky, very slightly calcareous, silty grading to siltstone in part, minor brown argillaceous limestone stringers partly dolomitic, trace pyrite.
4,060.00 to 4,065.00	100% Claystone medium gray, partly brownish, rare light gray, firm to blocky, very slightly calcareous, silty grading to siltstone in part, minor brown argillaceous limestone stringers partly dolomitic.
4,065.00 to 4,070.00	100% Claystone medium gray, firm to blocky, silty, slightly calcareous, occasional siltstone stringers, minor argillaceous dolomitic limestone stringers becoming marly in part.
4,070.00 to 4,075.00	100% Claystone brownish gray, firm to blocky, silty, slightly calcareous to dolomitic in part, occasional argillaceous dolomitic limestone grading to marlstone, trace glauconite.
4,075.00 to 4,080.00	100% Claystone brownish gray, firm to blocky, silty, slightly calcareous to dolomitic in part, occasional argillaceous dolomitic limestone grading to marlstone
4,080.00 to 4,085.00	100% Claystone brownish gray, firm to blocky, silty, slightly calcareous to dolomitic in part, occasional argillaceous dolomitic limestone grading to marlstone
4,085.00 to 4,090.00	100% Claystone brownish gray, blocky, slightly calcareous, silty, grading to slts in part, occasional brown limestone to dolomite stringers, grading to marl, trace white calcareous siltstone.
4,090.00 to 4,095.00	100% Claystone brownish gray, blocky, slightly calcareous, silty, grading to slts in part, occasional brown limestone to dolomite stringers, grading to marl.
4,095.00 to 4,100.00	100% Claystone brownish gray, blocky, slightly calcareous, silty, grading to slts in part, occasional brown limestone to dolomite stringers, grading to marl.
4,100.00 to 4,105.00	100% Claystone brownish gray, blocky, slightly calcareous, silty, grading to slts in part, occasional brown limestone to dolomite stringers, grading to marl, trace white calcareous siltstone.
4,105.00 to 4,110.00	100% Claystone medium gray, brownish in part, blocky, silty, slightly calcareous, occasional siltstone stringers, occasional marlstone with trace carbonaceous streaks.
4,110.00 to 4,115.00	100% Claystone medium gray, brownish in part, blocky, silty, slightly calcareous, occasional siltstone stringers, occasional marlstone with trace carbonaceous streaks.
4,115.00 to 4,120.00	100% Claystone brownish gray, firm to blocky, silty, slightly calcareous, minor calcareous marlstone to partly dolomitic limestone stringers, occasional calcite.
4,120.00 to 4,125.00	100% Claystone brownish gray, dark gray in part, slightly calcareous, silty with occasional calcareous siltstone stringer, trace pyrite, rare trace glauconite.
4,125.00 to 4,130.00	100% Claystone gray brown, blocky, silty, slightly cals, occasional siltstone stringer, minor brown limestone to marly stringers.

Chevron e	t al	Newburn	H-23

Well History Repor	Well	History	Report
--------------------	------	---------	--------

4,130.00 to 4,135.00	90% Claystone gray brown, blocky, silty, slightly cals, occasional siltstone stringer, minor brown limestone to marly stringers.
	10% Limestone light brown to tan, microcrystalline to partly mudstone, brittle, argillaceous, trace glauconite.
4,135.00 to 4,140.00	90% Claystone gray brown, blocky, silty, slightly cals, occasional siltstone stringer, minor brown limestone to marly stringers.
	10% Limestone light brown to tan, microcrystalline to partly mudstone, brittle, argillaceous, trace glauconite.
4,140.00 to 4,145.00	70% Claystone gray brown, blocky, silty, slightly cals, occasional siltstone stringer, minor brown limestone to marly stringers.
	30% Calcareous Marlstone light gray, argillaceous, firm to moderately hard in part, grading to limestone with common limestone stringers.
4,145.00 to 4,150.00	100% Claystone dark brown to gray brown, blocky, silty, moderately calcareous, common carbonaceous specks, trace disseminated pyrite, grading locally to argillaceous siltstone.
4,150.00 to 4,155.00	100% Claystone dark brown to gray brown, blocky, silty, moderately calcareous, common carbonaceous specks, trace disseminated pyrite, grading locally to argillaceous siltstone.
4,155.00 to 4,160.00	100% Claystone dark brown to gray brown, blocky, silty, moderately calcareous, common carbonaceous specks, trace disseminated pyrite, grading locally to argillaceous siltstone.
4,160.00 to 4,165.00	100% Claystone dark brown to gray brown, blocky, silty, moderately calcareous, common carbonaceous specks, trace disseminated pyrite, grading locally to argillaceous siltstone.
4,165.00 to 4,170.00	100% Claystone brown to gray brown, firm to blocky, slightly calcareous, silty, common carbonaceous specks, trace disseminated pyrite with occasional light gray white calcareous, slightly sandy, argillaceous siltstone interbeds.
4,170.00 to 4,175.00	100% Claystone brown to gray brown, firm to blocky, slightly calcareous, silty, common carbonaceous specks, trace disseminated pyrite with occasional light gray white calcareous, siltstone stringers.
4,175.00 to 4,180.00	100% Claystone brown to gray brown, firm to blocky, slightly calcareous, silty, common carbonaceous specks, trace disseminated pyrite with occasional light gray white calcareous, siltstone stringers.
4,180.00 to 4,185.00	100% Claystone brown, grayish in part, slightly calcareous, silty grading to siltstone with occasional calcareous siltstone, common carbonaceous specks, trace pyrite.
4,185.00 to 4,190.00	100% Claystone brown to gray brown, firm to blocky, slightly calcareous, silty, common carbonaceous specks, trace disseminated pyrite with occasional light gray white calcareous siltstone stringers.
4,190.00 to 4,195.00	100% Claystone brown to gray brown, firm to blocky, slightly calcareous, silty, common carbonaceous specks, trace disseminated pyrite with occasional light gray white calcareous siltstone stringers.
4,195.00 to 4,200.00	100% Claystone brown to gray brown, blocky, partly calcareous, silty becoming argillaceous siltstone, occasional white to gray white calcareous siltstone, trace glauconite, common carbonaceous flakes.

4,200.00 to 4,205.00	100% Claystone brown to gray brown, blocky, partly calcareous, silty becoming argillaceous siltstone, occasional white to gray white calcareous siltstone, trace glauconite, common carbonaceous flakes.
4,205.00 to 4,210.00	100% Claystone brown to gray brown, blocky, partly calcareous, silty becoming argillaceous siltstone, occasional white to gray white calcareous siltstone, trace glauconite, common carbonaceous flakes.
4,210.00 to 4,215.00	100% Claystone brown to gray brown, blocky, partly calcareous, silty becoming argillaceous siltstone, occasional white to gray white calcareous siltstone, trace glauconite, common carbonaceous flakes.
4,215.00 to 4,220.00	100% Claystone brown to gray brown, blocky, partly calcareous, silty becoming argillaceous siltstone, occasional white to gray white calcareous siltstone, trace glauconite, common carbonaceous flakes.
4,220.00 to 4,225.00	100% Claystone brown, grayish in part, firm to blocky, slightly calcareous, silty grading to siltstone, common carbonaceous flakes, occasional gray white calcareous siltstone stringers.
4,225.00 to 4,230.00	100% Claystone brown, grayish in part, firm to blocky, slightly calcareous, silty grading to siltstone, common carbonaceous flakes, occasional gray white calcareous siltstone stringers.
4,230.00 to 4,235.00	 75% Claystone brown, grayish in part, firm to blocky, slightly calcareous, silty grading to siltstone, common carbonaceous flakes, occasional gray white calcareous siltstone stringers. 25% Limestone white to off white and grayish in part, chalky mudstone, crumbly, silty, trace glauconite.
4,235.00 to 4,240.00	100% Claystone brown, grayish in part, firm to blocky, slightly calcareous, silty grading to siltstone, common carbonaceous flakes, occasional gray white calcareous siltstone stringers.
4,240.00 to 4,245.00	100% Claystone brown, grayish in part, firm to blocky, slightly calcareous, silty grading to siltstone, common carbonaceous flakes, minor gray white calcareous siltstone stringers.
4,245.00 to 4,250.00	100% Claystone brown, grayish in part, firm to blocky, weakly calcareous, silty, minor calcareous siltstone stringers.
4,250.00 to 4,255.00	100% Claystone brown, grayish in part, firm to blocky, weakly calcareous, silty, minor calcareous siltstone stringers.
4,255.00 to 4,260.00	100% Claystone brown, grayish in part, firm to blocky, weakly calcareous, silty, minor calcareous siltstone stringers.
4,260.00 to 4,265.00	100% Claystone brown, grayish brown, firm and blocky, silty, slightly calcareous, trace carbonaceous specks, minor white chalky limestone.
4,265.00 to 4,270.00	100% Claystone brown, grayish brown, firm and blocky, silty, slightly calcareous, trace carbonaceous specks, minor white chalky limestone.

Chevron et al Newburn H-23

	We	ll Hi	story	Report	t
--	----	-------	-------	--------	---

4,270.00 to 4,275.00	85% Claystone brown, grayish brown, firm and blocky, silty, slightly calcareous, trace carbonaceous specks, minor white chalky limestone.
	15% Limestone white to gray white, chalky, trace carbonaceous flakes.
4,275.00 to 4,280.00	60% Limestone white to off white and gray white, soft to crumbly, chalky, common carbonaceous flakes, partly silty.
	40% Claystone brown, grayish brown, firm and blocky, silty, slightly calcareous, trace carbonaceous specks.
4,280.00 to 4,285.00	75% Limestone off white, grayish white, chalky, soft to crumbly, argillaceous, trace carbonaceous flakes.
	25% Claystone brown, grayish brown, firm and blocky, silty, slightly calcareous, trace carbonaceous specks.
4,285.00 to 4,290.00	80% Limestone off white, grayish white, chalky, soft to crumbly, argillaceous, trace carbonaceous flakes. with trace glauconite, commonly interbedded with a silty white clay laminae.
	20% Claystone brown, grayish brown, firm and blocky, silty, slightly calcareous, trace carbonaceous specks.
4,290.00 to 4,295.00	60% Claystone brown gray to off white, soft amorphous white silty clay laminae in limestone and brown gray claystone.
	40% Limestone off white, grayish white, chalky, soft to crumbly, argillaceous, trace carbonaceous flakes, with trace glauconite, commonly interbedded with a silty white clay laminae.
4,295.00 to 4,300.00	100% Claystone off white to grayish white, partly brown, soft and amorphous, silty and rarely sandy, locally becoming chalky limestone, occasional dead oil with dull gold fluorescence and no cut.
4,300.00 to 4,305.00	70% Claystone off white to grayish white, partly brown, soft and amorphous, silty and rarely sandy, locally becoming chalky limestone, occasional dead oil with dull gold fluorescence and no cut.
	30% Limestone off white, grayish white, chalky, soft to crumbly, argillaceous, trace carbonaceous flakes, commonly interbedded with a silty white clay laminae.
4,305.00 to 4,310.00	85% Claystone off white to grayish white, partly brown, soft and amorphous, silty and rarely sandy, locally becoming chalky limestone, occasional dead oil with dull gold fluorescence and no cut.
	15% Limestone off white, grayish white, chalky, soft to crumbly, argillaceous, trace carbonaceous flakes, commonly interbedded with a silty white clay laminae.
4,310.00 to 4,315.00	75% Sandstone off white, partly buff, fine grained, occasional medium grains, subrounded, generally well sorted, unconsolidated in sample, white limestone and partly argillaceous matrix, occasional dead oil stain with dull yellow fluorescence and very slight weak white cut, common limestone interbeds.
	25% Limestone off white, grayish white, chalky, soft to crumbly, argillaceous, trace carbonaceous flakes, commonly interbedded with a silty white clay laminae.
4,315.00 to 4,320.00	100% Sandstone off white, partly buff, fine grained, occasional medium grains, subrounded, generally well sorted, unconsolidated in sample, white limestone and partly argillaceous matrix, occasional dead oil stain with dull yellow fluorescence and very slight weak white cut, common limestone interbeds.

4,320.00 to 4,325.00	100% Limestone off white, light brownish in part, chalky and crumbly, sandy and silty, grading to calcareous sandstone in part, trace glauconite, argillaceous and becoming marly, minor gray claystone laminae.
4,325.00 to 4,330.00	80% Claystone gray brown, blocky, calcareous, silty, trace carbonaceous flakes. 20% Calcareous maristone light tan to gray, firm to blocky, argillaceous.
4,330.00 to 4,335.00	100% Claystone gray brown, blocky, calcareous, silty, trace carbonaceous flakes.
4,335.00 to 4,340.00	100% Claystone gray brown, blocky, calcareous, silty, trace carbonaceous flakes.
4,340.00 to 4,345.00	 75% Claystone gray brown, blocky, calcareous, silty, trace carbonaceous flakes. 25% Limestone off white, grayish white in part, soft to crumbly, chalky, partly argillaceous, silty and sandy in part, trace carbonaceous material.
4,345.00 to 4,350.00	100% Limestone off white, grayish white in part, soft to crumbly, chalky, partly argillaceous, silty and sandy in part, trace carbonaceous material.
4,350.00 to 4,355.00	 60% Limestone off white, grayish white in part, soft to crumbly, chalky, partly argillaceous, silty and sandy in part, trace carbonaceous material, occasional claystone laminae. 40% Claystone medium gray, gray brown in part, firm and bk\lky, silty, calcareous, common carbonaceous flakes.
4,355.00 to 4,360.00	 90% Claystone medium gray, gray brown in part, firm and bk\lky, silty, calcareous, common carbonaceous flakes. 10% Limestone off white, grayish white in part, soft to crumbly, chalky, partly argillaceous, silty and sandy in part, trace carbonaceous material, occasional claystone laminae.
4,360.00 to 4,365.00	100% Claystone medium gray, gray brown, blocky, silty, calcareous, occasional thin white limestone stringers.
4,365.00 to 4,370.00	100% Claystone medium gray, slightly brownish, blocky to platy in part, calcareous, silty grading locally to siltstone, common carbonaceous flakes, occasional marly stringer.
4,370.00 to 4,375.00	100% Claystone medium gray, slightly brownish, blocky to platy in part, calcareous, silty grading locally to siltstone, common carbonaceous flakes, occasional marly stringer.
4,375.00 to 4,380:00	100% Claystone medium gray, slightly brownish, blocky to platy in part, calcareous, silty grading locally to siltstone, common carbonaceous flakes, minor tan limestone stringers.
4,380.00 to 4,385.00	100% Claystone medium gray, blocky to platy in part, calcareous, silty grading locally to siltstone, common carbonaceous flakes, minor tan limestone stringers, common trace glauconite and rare trace pyrite.
4,385.00 to 4,390.00	100% Claystone medium gray, blocky to platy in part, calcareous, silty grading locally to siltstone, common carbonaceous flakes, minor tan limestone stringers, common trace glauconite and rare trace pyrite.
4,390.00 to 4,395.00	100% Claystone medium gray, blocky to platy, partly elongated, calcareous, silty grading locally to siltstone, trace pyrite, minor marlstone stringers.
4,395.00 to 4,400.00	100% Claystone medium gray, blocky to platy, partly elongated, calcareous, silty grading locally to siltstone, trace pyrite, minor marlstone stringers.

Chevron	et al Nev	vburn H-23

4,400.00 to 4,405.00	100% Claystone medium gray, blocky to platy, partly elongated, calcareous, silty grading locally to siltstone, trace pyrite, minor marlstone stringers.
4,405.00 to 4,410.00	100% Claystone medium gray, blocky to platy and slightly elongated, calcareous, silty with local siltstone stringers, trace carbonaceous flakes, minor marlstone stringers.
4,410.00 to 4,415.00	100% Claystone medium gray, blocky to platy and slightly elongated, calcareous, silty with local siltstone stringers, trace carbonaceous flakes, minor marlstone stringers and occasional very fine grained argillaceous sandstone stringers.
4,415.00 to 4,418.00	100% Claystone medium gray, blocky to platy and slightly elongated, calcareous, silty with local siltstone stringers, trace carbonaceous flakes, minor marlstone stringers and occasional very fine grained argillaceous sandstone stringers.
4,418.00 to 4,425.00	50% Claystone medium gray to gray brown, firm, subblocky, calcareous, silty, carbonaceous specks, calcareous stringers, marlstone stringers, grading to siltstone.
	50% Siltstone medium gray to gray brown, firm, subblocky, coarse silt size quartz grains, calcareous, argillaceous, carbonaceous specks, calcareous stringers, marlstone stringers.
4,425.00 to 4,430.00	80% Claystone medium gray to gray brown, firm, subblocky, calcareous, silty, carbonaceous specks, calcareous stringers, marlstone stringers, grading to siltstone.
	20% Siltstone medium gray to gray brown, firm, subblocky, coarse silt size quartz grains, calcareous, argillaceous, carbonaceous specks and laminations with pyrite, minor calcite stringers and marlstone stringers.
4,430.00 to 4,435.00	90% Silty claystone medium gray to gray brown, firm, subblocky, calcareous, very silty, common coarse silt size quartz grains, carbonaceous specks, calcareous stringers, marlstone stringers, grading to siltstone.
	10% Siltstone medium gray to gray brown, firm, subblocky, coarse silt size quartz grains, calcareous, argillaceous, carbonaceous specks and laminations with pyrite, minor calcite stringers and marlstone stringers.
4,435.00 to 4,440.00	80% Siltstone light to medium gray to gray brown, firm, subblocky, coarse silt size quartz grains, calcareous, argillaceous, carbonaceous specks and laminations with pyrite, minor calcite stringers and marlstone stringers.
	20% Silty claystone medium gray to gray brown, firm, subblocky, coarse silt size quartz grains, calcareous, argillaceous, carbonaceous specks and laminations with pyrite, minor calcite stringers and marlstone stringers.
4,440.00 to 4,445.00	100% Silty claystone light gray, firm, amorphous to subblocky, calcareous, coarse silt size clear and frosted white quartz grains, very fine disseminated pyrite, fine carbonaceous specks, minor dolomite stringers, grading to siltstone.
4,445.00 to 4,450.00	70% Claystone light gray, firm, amorphous to subblocky, calcareous, silty laminations, very fine disseminated pyrite, fine carbonaceous specks, minor dolomite stringers, grading to siltstone.
	30% Silty claystone light gray, firm, amorphous to subblocky, calcareous, coarse silt size clear and frosted white quartz grains, very fine disseminated pyrite, fine carbonaceous specks, minor dolomite stringers, grading to siltstone.
4,450.00 to 4,455.00	100% Claystone light to medium gray, firm, subblocky, slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks, locally grading to siltstone.

4,455.00 to 4,460.00	100% Claystone light to medium gray, firm, subblocky, slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks, locally grading to siltstone.
4,460.00 to 4,465.00	100% Claystone very light to medium gray, firm, subblocky, slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks, locally grading to siltstone.
4,465.00 to 4,470.00	100% Claystone very light to medium gray, firm, subblocky, slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks, locally grading to siltstone.
4,470.00 to 4,475.00	100% Claystone very light to medium gray, firm, subblocky, slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks, trace loose very fine frosted white and clear quartz grains, trace limestone micro laminations, locally grading to siltstone.
4,475.00 to 4,480.00	100% Claystone very light to medium gray and dark gray brown, firm, subblocky, very slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks, trace loose very fine frosted white and clear quartz grains, trace limestone and very fine grained sandstone micro laminations, commonly grading to siltstone.
4,480.00 to 4,485.00	100% Claystone very light to medium gray and dark gray brown, firm, subblocky, very slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks, trace loose very fine frosted white and clear quartz grains, trace limestone and very fine grained sandstone micro laminations, commonly grading to siltstone.
4,485.00 to 4,490.00	100% Claystone very light to medium gray and dark gray brown, firm, subblocky, very slightly calcareous, silty laminations and stringers, local very fine disseminated pyrite, fine carbonaceous specks, trace loose very fine frosted white and clear quartz grains, trace limestone and very fine grained sandstone micro laminations, commonly grading to siltstone.
4,490.00 to 4,495.00	100% Claystone medium to dark gray, firm, subblocky, slightly calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace siderite(?), commonly grading to siltstone.
4,495.00 to 4,500.00	100% Claystone medium to dark gray, firm, subblocky, slightly calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace siderite(?), commonly grading to siltstone or silty shale.
4,500.00 to 4,505.00	100% Claystone medium to dark gray, firm, subblocky, slightly calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace siderite(?), minor siltstone micro laminations, locally grading to siltstone or silty shale.
4,505.00 to 4,510.00	100% Claystone medium to dark gray, firm, subblocky, slightly calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace siderite(?), minor siltstone micro laminations, locally grading to siltstone or silty shale.
4,510.00 to 4,515.00	100% Claystone medium to dark gray, firm, subblocky, calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to shale.

4,515.00 to 4,520.00	100% Claystone medium to dark gray, firm, subblocky, calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to shale.
4,520.00 to 4,525.00	100% Claystone medium to dark gray, firm, subblocky, calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to shale.
4,525.00 to 4,530.00	100% Claystone light to medium gray, firm, brittle, subblocky, calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to shale.
4,530.00 to 4,535.00	100% Claystone light to medium gray, firm, brittle, subblocky, slightly calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to shale.
4,535.00 to 4,540.00	100% Claystone light to medium gray, firm, brittle, subblocky, slightly calcareous, silty, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to silty shale.
4,540.00 to 4,545.00	100% Claystone light to medium gray, firm, brittle, subblocky, slightly calcareous, silty, local coarse silt size quartz grains, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to silty shale.
4,545.00 to 4,550.00	100% Claystone light to medium gray, firm, brittle, subblocky, slightly calcareous, silty, local coarse silt size quartz grains, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to silty shale.
4,550.00 to 4,555.00	100% Claystone light to medium gray, firm, brittle, subblocky, slightly calcareous, silty, local coarse silt size quartz grains, very fine disseminated pyrite, very fine carbonaceous specks, trace brown limestone stringers, grading to silty shale.
4,555.00 to 4,565.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, fine disseminated pyrite, trace very fine carbonaceous specks.
4,565.00 to 4,570.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, fine disseminated pyrite, trace very fine carbonaceous specks.
4,570.00 to 4,575.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, trace fine disseminated pyrite.
4,575.00 to 4,580.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, trace fine disseminated pyrite.
4,580.00 to 4,585.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, trace fine disseminated pyrite, trace brown limestone stringers, trace crystalline calcite laminations.
4,585.00 to 4,590.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, trace fine disseminated pyrite, trace beige limestone stringers.
4,590.00 to 4,595.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, trace fine disseminated pyrite, trace beige limestone stringers, trace crystalline calcite vienlets.

4,595.00 to 4,600.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, trace fine disseminated pyrite, trace carbonaceous specks, trace beige limestone stringers, trace crystalline calcite vienlets.
4,600.00 to 4,605.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, calcareous, locally silty, trace fine disseminated pyrite, trace carbonaceous specks, trace beige limestone stringers with pyrite and imbedded very fine quartz grains.
4,605.00 to 4,610.00	100% Shale light to medium gray to gray brown, firm, brittle, subblocky, calcareous, locally silty, fine disseminated pyrite, carbonaceous specks, trace beige limestone stringers with pyrite and imbedded very fine quartz grains.
4,610.00 to 4,615.00	100% Shale light to medium gray to gray brown, firm, brittle, subblocky, calcareous, locally silty, fine disseminated pyrite, carbonaceous specks, trace beige limestone stringers with pyrite and imbedded very fine quartz grains.
4,615.00 to 4,620.00	100% Shale light to medium gray to gray brown, firm, brittle, subblocky, calcareous, locally silty, fine disseminated pyrite, carbonaceous specks, trace beige limestone stringers with pyrite and imbedded very fine quartz grains.
4,620.00 to 4,625.00	100% Shale medium gray to gray brown, local light gray silty stringers, firm, brittle, subblocky, calcareous, trace very fine disseminated pyrite, trace carbonaceous specks, trace beige limestone stringers.
4,625.00 to 4,630.00	100% Shale medium gray to gray brown, local light gray silty stringers, firm, brittle, subblocky, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers.
4,630.00 to 4,635.00	100% Shale medium gray to gray brown, firm, brittle, subblocky, locally silty, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers.
4,635.00 to 4,640.00	100% Shale medium gray to gray brown, firm, brittle, subblocky, locally silty, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers.
4,640.00 to 4,645.00	100% Shale medium gray to gray brown, firm, brittle, subblocky, locally silty, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers.
4,645.00 to 4,650.00	100% Shale medium gray to gray brown, trace gray green, firm, brittle, subblocky, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers with very fine quartz grains and carbonaceous material.
4,650.00 to 4,655.00	100% Shale medium gray to gray brown, trace gray green, trace very light gray siltstone stringers, firm, brittle, subblocky, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers with very fine quartz grains and carbonaceous material.
4,655.00 to 4,660.00	100% Shale medium gray to gray brown, trace gray green, firm, brittle, subblocky, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers with very fine quartz grains and carbonaceous material, + very light gray soft non calcareous silty shale stringers.

4,660.00 to 4,665.00	100% Shale 50% medium gray to gray brown, trace gray green, firm, brittle, subblocky, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers with very fine quartz grains and carbonaceous material; 50% very light gray soft non calcareous silty shale stringers with very fine disseminated pyrite and carbonaceous specks, trace loose pyrite.
4,665.00 to 4,670.00	100% Shale 20% medium gray to gray brown, trace gray green, firm, brittle, subblocky, calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, minor trace beige limestone stringers with very fine quartz grains and carbonaceous material; 80% very light gray soft non calcareous silty shale stringers with very fine disseminated pyrite and carbonaceous specks, trace loose pyrite.
4,670.00 to 4,675.00	100% Shale very light gray, soft to firm, plastic to brittle, subblocky, trace very fine disseminated pyrite, trace very fine carbonaceous specks, locally silty, minor dolomitic stringers.
4,675.00 to 4,680.00	100% Shale very light gray, soft to firm, plastic to brittle, subblocky, locally slightly calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, locally silty, minor dolomitic stringers.
4,680.00 to 4,685.00	100% Shale very light gray, soft to firm, plastic to brittle, subblocky, locally slightly calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, locally silty, minor dolomitic stringers.
4,685.00 to 4,690.00	100% Shale very light gray, firm, brittle, subblocky, silty in locally slightly calcareous, trace very fine disseminated pyrite, trace very fine carbonaceous specks, local siliceous coarse siltstone micro laminations, minor dolomitic and limestone stringers.
4,690.00 to 4,695.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, slightly calcareous, very fine disseminated pyrite, very fine carbonaceous specks, minor trace beige argillaceous limestone stringers with carbonaceous material.
4,695.00 to 4,700.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, slightly calcareous, very fine disseminated pyrite, very fine carbonaceous specks, minor trace beige argillaceous limestone stringers with carbonaceous material, trace coarse silt size to very fine sand laminations.
4,700.00 to 4,705.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, slightly calcareous, very fine disseminated pyrite, very fine carbonaceous specks, minor trace beige argillaceous limestone stringers with carbonaceous material.
4,705.00 to 4,710.00	100% Shale medium to dark gray brown, firm, brittle, subblocky, slightly calcareous, very fine disseminated pyrite, very fine carbonaceous specks, minor trace beige argillaceous limestone stringers with carbonaceous material, minor light gray shale laminations.
4,710.00 to 4,715.00	100% Shale dark gray brown, firm moderately hard, brittle, subblocky, non to slightly calcareous, locally silty, very fine disseminated pyrite, very fine carbonaceous specks, minor trace beige argillaceous limestone stringers with carbonaceous material.
4,715.00 to 4,720.00	100% Shale dark gray brown, firm moderately hard, brittle, subblocky, non to slightly calcareous, locally silty, very fine disseminated pyrite, common very fine carbonaceous specks.

4,720.00 to 4,725.00	100% Shale dark gray brown, firm moderately hard, brittle, subblocky, non to slightly calcareous, locally silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace loose pyrite.
4,725.00 to 4,730.00	100% Shale dark gray brown, firm moderately hard, brittle, subblocky, non to slightly calcareous, locally silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace loose pyrite.
4,730.00 to 4,735.00	100% Shale dark gray brown, firm moderately hard, brittle, subblocky, non to slightly calcareous, locally silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers with carbonaceous material.
4,735.00 to 4,740.00	100% Shale dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, locally silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers with carbonaceous material.
4,740.00 to 4,745.00	100% Shale dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, locally siliceous, silty, very fine disseminated pyrite, common very fine carbonaceous specks.
4,745.00 to 4,750.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, silty, very fine disseminated pyrite, common very fine carbonaceous specks.
4,750.00 to 4,755.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers with carbonaceous material.
4,755.00 to 4,760.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers with carbonaceous material.
4,760.00 to 4,765.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers with carbonaceous material.
4,765.00 to 4,770.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers with carbonaceous material, trace loose pyrite.
4,770.00 to 4,775.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, locally siliceous, silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers with carbonaceous material, trace loose pyrite.
4,775.00 to 4,780.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, locally siliceous, silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers.

4,780.00 to 4,785.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, locally siliceous, silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers.
4,785.00 to 4,790.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, non to slightly calcareous, locally siliceous, silty, very fine disseminated pyrite, common very fine carbonaceous specks, trace argillaceous limestone stringers.
4,790.00 to 4,795.00	100% Shale medium to dark gray to gray brown, firm to moderately hard, brittle, subblocky, calcareous, trace argillaceous limestone stringers.
4,795.00 to 4,800.00	100% Shale medium to dark gray to gray brown, firm to moderately hard, brittle, subblocky, calcareous, trace argillaceous limestone stringers.
4,800.00 to 4,805.00	100% Shale medium to dark gray to gray brown, firm to moderately hard, brittle, subblocky, calcareous, trace argillaceous limestone stringers.
4,805.00 to 4,810.00	100% Shale medium to dark gray to gray brown, firm to moderately hard, brittle, subblocky, calcareous.
4,810.00 to 4,815.00	100% Shale medium to dark gray to gray brown, firm to moderately hard, brittle, subblocky, calcareous.
4,815.00 to 4,820.00	100% Shale medium to dark gray to gray brown, firm to moderately hard, brittle, subblocky, calcareous.
4,820.00 to 4,825.00	100% Shale medium to dark gray to gray brown, firm to moderately hard, brittle, subblocky, calcareous, trace brown limestone stringers, trace white very calcareous sandy stringers.
4,825.00 to 4,830.00	100% Shale medium to dark gray, trace gray brown, firm to moderately hard, brittle, subblocky calcareous, very fine carbs specks, trace very fine disseminated pyrite, trace brown limestone stringers, trace white very calcareous sandy stringers.
4,830.00 to 4,835.00	100% Shale medium to dark gray, trace gray brown, firm to moderately hard, brittle, subblocky calcareous, very fine carbs specks, trace very fine disseminated pyrite, trace brown limestone stringers, trace white very calcareous sandy stringers.
4,835.00 to 4,840.00	100% Shale medium gray, trace gray brown, firm to moderately hard, brittle, subblocky, calcareous, very fine carbs specks, trace very fine disseminated pyrite, trace brown limestone stringers, trace white very calcareous sandy stringers.
4,840.00 to 4,845.00	100% Shale medium gray, trace gray brown, firm to moderately hard, brittle, subblocky, calcareous, locally silty, very fine carbs specks, trace very fine disseminated pyrite, trace brown limestone stringers, trace white very calcareous sandy stringers.
4,845.00 to 4,850.00	100% Shale medium gray, trace gray brown, firm to moderately hard, brittle, subblocky, calcareous, locally silty, very fine carbs specks, trace very fine disseminated pyrite, trace brown limestone stringers, trace white very calcareous sandy stringers.
4,850.00 to 4,855.00	100% Shale medium gray, trace gray brown, trace green, firm to moderately hard, brittle, subblocky, calcareous, locally silty, very fine carbs specks, very fine disseminated pyrite, trace brown limestone stringers with carbonaceous material, trace white very calcareous sandy stringers.

4,855.00 to 4,860.00	100% Shale medium gray, trace gray brown, trace green, firm to moderately hard, brittle, subblocky, calcareous, locally silty, very fine carbs specks, very fine disseminated
	pyrite, trace brown limestone stringers with carbonaceous material, trace white very calcareous sandy stringers.
4,860.00 to 4,865.00	100% Shale medium gray and t gray brown, trace green, firm to moderately hard, brittle, subblocky, slightly calcareous, locally silty, very fine carbs specks, very fine disseminated pyrite, trace brown limestone stringers, minor trace white very calcareous sandy stringers.
4,865.00 to 4,870.00	100% Shale medium gray and t gray brown, trace green, firm to moderately hard, brittle, subblocky, slightly calcareous, locally silty, very fine carbs specks, very fine disseminated pyrite, trace brown limestone stringers, minor trace white very calcareous sandy stringers.
4,870.00 to 4,875.00	100% Shale medium to gray and gray brown, trace green, firm to moderately hard, brittle, subblocky, slightly calcareous, locl silty laminations, very fine carbs specks, very fine disseminated pyrite, white calcareous sandy stgs with trace glauconite.
4,875.00 to 4,880.00	100% Shale medium to gray and gray brown, trace green, firm to moderately hard, brittle, subblocky, slightly calcareous, locl silty laminations, very fine carbs specks, very fine disseminated pyrite, white calcareous sandy stgs with trace glauconite.
4,880.00 to 4,885.00	100% Shale medium gray brown, firm to moderately hard, brittle, subblocky, very calcareous, locl silty laminations, very fine carbs specks, very fine disseminated pyrite, trace brown limestone stringers, trace nodule pyrite.
4,885.00 to 4,890.00	100% Shale medium gray, firm to moderately hard, brittle, subblocky, calcareous, locl silty laminations, very fine carbs specks, very fine disseminated pyrite, trace brown argillaceous limestone stringers with carbonaceous material, trace pyritized worm burrows, trace white crystalline calcite stringers.
4,890.00 to 4,895.00	100% Shale medium gray, firm to moderately hard, brittle, subblocky, calcareous, locl silty laminations, very fine carbs specks, very fine disseminated pyrite, trace brown argillaceous limestone stringers with carbonaceous material, trace white crystalline calcite stringers.
4,895.00 to 4,900.00	100% Shale medium to dark gray, firm to moderately hard, brittle, subblocky, calcareous, very fine carbs specks, very fine disseminated pyrite, trace brown argillaceous limestone stringers with carbonaceous material, trace white crystalline calcite stringers, minor trace very fine grained sandstone laminations.
4,900.00 to 4,905.00	100% Shale medium to dark gray brown, firm to moderately hard, brittle, subblocky, calcareous, very fine carbs specks, very fine disseminated pyrite, trace brown argillaceous limestone stringers with carbonaceous material, trace white crystalline calcite stringers, trace loose frosted white and clear very fine rounded quartz grains.
4,905.00 to 4,910.00	100% Shale dark gray, firm to moderately hard, brittle, subblocky, slightly calcareous, very fine carbs specks, very fine disseminated pyrite, trace brown argillaceous limestone stringers, trace white crystalline calcite stringers, minor trace loose glauconite grains.

4,910.00 to 4,915.00	100% Shale dark gray, firm to moderately hard, brittle, subblocky, slightly calcareous, very fine carbs specks, very fine disseminated pyrite, trace brown argillaceous limestone stringers, trace white crystalline calcite stringers, trace light gray argillaceous limestone stringers with trace very fine grained quartz grains.
4,915.00 to 4,920.00	100% Shalemedium gray, firm to moderately hard, brittle, subblocky, slightly calcareous, very fine carbs specks, very fine disseminated pyrite, silty in part.
4,920.00 to 4,925.00	100% Shale medium gray, firm to moderately hard, brittle, subblocky, slightly calcareous, very fine carbs specks, very fine disseminated pyrite, silty in part.
4,925.00 to 4,930.00	 Shale medium gray, firm to moderately hard, brittle, subblocky, slightly calcareous, very fine carbs specks, very fine disseminated pyrite, silty in part. Sandstone light gray, friable, clear and frosted white quartz grains, very fine to fine grained well sorted, subrounded grains, calcareous cement, poor visible porosity, no shows.
4,930.00 to 4,935.00	100% Shale medium gray, trace green, firm to moderately hard, brittle, subblocky, slightly calcareous, very fine carbs specks, very fine disseminated pyrite, silty in part, trace limestone stringers, trace loose pyrite.
4,935.00 to 4,940.00	100% Shale medium gray, trace green, firm to moderately hard, brittle, subblocky, very slightly calcareous, very fine carbs specks, very fine disseminated pyrite, silty in part.
4,940.00 to 4,945.00	100% Shale medium gray, trace green with glauconite, firm, brittle, subblocky, very slightly calcareous, very fine carbs specks, very fine disseminated pyrite, silty in part, white crystalline calcite stringers, trace sandy laminations.
4,945.00 to 4,950.00	 Shale medium gray, trace green with glauconite, firm, brittle, subblocky, very slightly calcareous, very fine carbs specks, very fine disseminated pyrite, silty in part, white crystalline calcite stringers, trace sandy laminations. Sandstone light gray -off white, friable, clear and frosted quartz grains, very fine to fine grained, well sorted, subrounded, calcareous cement, poor visible porosity, no shows.
4,950.00 to 4,955.00	100% Shale very light to light gray, firm, subblocky, brittle, very calcareous, very fine disseminated pyrite and carbonaceous specks.
4,955.00 to 4,960.00	100% Shale very light to light gray, firm, subblocky, brittle, very calcareous, very fine disseminated pyrite and carbonaceous specks, white calcareous vienlets, local silty laminations.
4,960.00 to 4,965.00	100% Shale light to medium gray, firm, subblocky, brittle, very calcareous, very fine disseminated pyrite and carbonaceous specks, white calcareous vienlets, local silty laminations.
4,965.00 to 4,970.00	100% Shale light to medium gray, firm, subblocky, brittle, very calcareous, very fine disseminated pyrite and carbonaceous specks, white calcareous vienlets, local silty laminations with quartz feldspar and glauconite grains, pyrite vienlets.
4,970.00 to 4,975.00	100% Shale light to medium gray, firm, subblocky, brittle, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace white calcareous vienlets.
4,975.00 to 4,980.00	100% Shale light to medium gray, firm, subblocky, brittle, very calcareous, very fine disseminated pyrite and carbonaceous specks.

 4,980.00 to 4,985.00 100% Shale light to medium gray, firm, subblocky, brittle, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace white calcareous vienlets. 4,985.00 to 4,990.00 100% Shale light to medium gray, firm, subblocky, brittle, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace white calcareous vienlets. 4,990.00 to 4,995.00 100% Shale medium gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white crystalline calcite vienlets, trace brown limestone with carbonaceous laminations, pyrite laminations.
disseminated pyrite and carbonaceous specks, trace white calcareous vienlets. 4,990.00 to 4,995.00 100% Shale medium gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white crystalline calcite
disseminated pyrite and carbonaceous specks, trace white crystalline calcite
,,
4,995.00 to 5,000.00 100% Shale medium gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white crystalline calcite vienlets, trace brown limestone with micro laminations.
5,000.00 to 5,005.00 100% Shale medium gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white limestone vienlets.
5,005.00 to 5,010.00 100% Shale medium gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white limestone.
5,010.00 to 5,015.00 100% Shale medium gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white limestone.
5,015.00 to 5,020.00 100% Shale medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace calcareous vienlets.
5,020.00 to 5,025.00 100% Shale medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace calcareous vienlets, trace light gray calcareous sandstone laminations.
5,025.00 to 5,030.00 100% Shale medium gray and gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, minor silty laminations.
5,030.00 to 5,035.00 100% Shale medium gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace very fine sandstone laminations.
5,035.00 to 5,040.00 100% Shale medium gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white crystalline calcite, local silty laminations.
5,040.00 to 5,045.00 100% Shale medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace brown and white limestone stringers w/ carbonaceous laminae.
5,045.00 to 5,050.00 100% Shale light to medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace brown and white limestone stringers w/ carbonaceous laminae.
5,050.00 to 5,055.00 100% Shale medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace brown and white limestone stringers w/ carbonaceous laminae.
5,055.00 to 5,060.00 100% Shale medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace brown and white limestone stringers w/ carbonaceous laminae.

5,060.00 to 5,065.00	100% Shale medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks.
5,065.00 to 5,070.00	100% Shale light gray brown and medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white limestone stringers, trace light gray very fine grained calcareous sandstone stringers.
5,070.00 to 5,075.00	100% Shale gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white limestone stringers.
5,075.00 to 5,080.00	100% Shale gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks, trace white limestone stringers.
5,080.00 to 5,085.00	 Shale gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks. Sand loose, clear and frosted white quartz grains, orange feldspar, very fine grained,
	well sorted, no shows.
5,085.00 to 5,090.00	 Claystone very light gray, amorphous, soft, slightly calcareous. Shale medium gray, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks.
5,090.00 to 5,095.00	 Shale gray brown, firm, subblocky, brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous specks. Sandstone light gray, friable, clear quartz, very fine grained, well sorted, calcareous cement, no visible porosity, no shows; + loose very fine quartz grains.
5,095.00 to 5,100.00	100% Shale light to medium gray, subblocky, soft to firm, plastic to brittle, calcareous, trace very fine disseminated pyrite and carbonaceous flakes, trace white crystalline calcite.
5,100.00 to 5,105.00	100% Shale light to medium gray, subblocky, firm, plastic to brittle, very calcareous, trace very fine disseminated pyrite and carbonaceous flakes, trace white crystalline calcite.
5,105.00 to 5,110.00	100% Shale light to medium gray, subblocky, soft to firm, brittle, calcareous, trace very fine disseminated pyrite and carbonaceous flakes.
5,110.00 to 5,115.00	100% Shale medium gray, subblocky, firm, brittle, calcareous, trace very fine disseminated pyrite and carbonaceous flakes.
5,115.00 to 5,120.00	100% Shale medium gray, subblocky, firm, brittle, calcareous, trace very fine disseminated pyrite and carbonaceous flakes, minor trace very fine sand stringers, trace silty laminations, trace white crystalline calcite fragments.
5,120.00 to 5,125.00	100% Shale lower to medium gray, subblocky, firm, brittle, calcareous, trace very fine disseminated pyrite and carbonaceous flakes.
5,125.00 to 5,130.00	100% Shale medium gray, subblocky, firm, brittle, calcareous, trace very fine disseminated pyrite and carbonaceous flakes.
5,130.00 to 5,135.00	100% Shale medium gray, subblocky, firm, brittle, very calcareous, locally silty, lighter very fine disseminated pyrite and carbonaceous flakes.

5,135.00 to 5,140.00	80% Shale medium gray, subblocky, firm to hard, brittle, very calcareous, locally silty, trace very fine disseminated pyrite and carbonaceous flakes, trace pyrite veining and pyrite worm burrows.
	20% Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,140.00 to 5,145.00	90% Shale light to medium gray, subblocky, firm to hard, brittle, very calcareous, locally silty, trace very fine disseminated pyrite and carbonaceous flakes, trace pyrite veining.
	10% Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows + light gray calcareous cemented sandstone.
5,145.00 to 5,150.00	90% Shale light to medium gray, subblocky, firm to hard, brittle, very calcareous, locally silty, trace very fine disseminated pyrite and carbonaceous flakes.
	10% Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,150.00 to 5,155.00	95% Shale medium gray, subblocky, firm to hard, brittle, very calcareous, locally silty, trace very fine disseminated pyrite and carbonaceous flakes.
	5% Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,155.00 to 5,160.00	100% Shale medium gray, subblocky, firm to hard, brittle, very calcareous, locally silty, trace very fine disseminated pyrite and carbonaceous flakes, trace limestone stringers.
5,160.00 to 5,165.00	100% Shale medium gray, firm, very calcareous, locally silty, trace very fine disseminated pyrite and carbonaceous flakes, trace loose very fine sand.
5,165.00 to 5,170.00	100% Shale medium gray, firm, very calcareous, trace very fine disseminated pyrite and carbonaceous flakes, trace loose very fine sand, trace silt laminations, trace white limestone stringers.
5,170.00 to 5,175.00	80% Shale medium gray, firm, very calcareous, very fine carbonaceous flakes, trace white limestone stringers.
	20% Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,175.00 to 5,180.00	100% Shale dark gray, soft to firm, very calcareous, very fine carbonaceous flakes, trace loose very fine sand, trace white limestone stringers.
5,180.00 to 5,185.00	85% Shale dark gray, soft to firm, very calcareous, very fine carbonaceous flakes, trace loose very fine sand, trace white limestone stringers.
	15% Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,185.00 to 5,188.50	100% Shale medium to dark gray, soft to firm, very calcareous, very fine carbonaceous flakes, trace white limestone stringers, locally silt laminations.
5,188.50 to 5,190.00	90% Shale medium gray, soft to firm, very calcareous, very fine carbonaceous flakes, trace white limestone stringers, loose pyrite, pyrite veins, trace white and clear crystalline calcite.
	10% Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.

		Shale light to medium gray, soft to firm, very calcareous, very fine carbonaceous flakes, trace white limestone stringers, trace light gray very fine sandstone stringers. Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to
		fine grained, well sorted, subrounded, no shows.
5,195.00 to 5,200.00	90%	Shale light to medium gray, firm, very calcareous, very fine carbonaceous specks, light gray to white sandy calcareous stringers + trace light gray very fine grained sandstone laminations.
	10%	Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,200.00 to 5,205.00	90%	Shalelight gray, firm, very calcareous, very fine carbonaceous specks, locally silty, trace white limestone, trace light gray argillaceous calcareous very fine sandstone stringers.
	10%	Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,205.00 to 5,210.00		Shale medium to dark gray, firm, very calcareous, very fine carbonaceous specks, local siltstone laminae, trace white and beige limestone stringers.
	5%	Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,210.00 to 5,215.00	100%	Shale medium to dark gray, firm, very calcareous, very fine carbonaceous specks, local siltstone laminae, trace white and beige limestone stringers, trace sandstone and siltstone laminations.
5,215.00 to 5,219.00	95%	Shale medium to dark gray, firm, very calcareous, very fine carbonaceous specks, local siltstone laminae, trace white and beige limestone stringers, trace sandstone and siltstone laminations.
	5%	Sand loose, clear and frosted white quartz grains, trace orange feldspar, very fine to fine grained, well sorted, subrounded, no shows.
5,219.00 to 5,225.00	100%	Shale light to medium gray brown, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace light gray very fine grained calcareous sandstone laminations, local silty laminations.
5,225.00 to 5,230.00	95%	Shalelight to medium gray brown, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace light gray very fine grained calcareous sandstone laminations, local silty laminations, trace limestone.
	5%	Sandstone mottled light gray, firm to hard, friable to brittle, very fine to fine grained, well sorted, subrounded, well cemented with calcareous cement, trace carbonaceous material, trace disseminated pyrite, grading to sandy limestone, no visible porosity, no shows.
5,230.00 to 5,235.00	98% 2%	Shale light to medium gray brown, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks, local silty laminations, trace crystalline calcite. Sandstone mottled light gray, firm to hard, friable to brittle, very fine to fine grained, well
	- ~	sorted, subrounded, well cemented with calcareous cement, trace carbonaceous material, trace disseminated pyrite, grading to sandy limestone, no visible porosity, no shows.
5,235.00 to 5,240.00	100%	Shale medium to dark gray brown, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace light gray very fine grained calcareous sandstone laminations, local silty laminations, trace limestone stringers.

5,240.00 to 5,245.00	 Shale medium to dark gray brown, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace light gray very fine grained calcareous sandstone laminations, local silty laminations, trace limestone stringers. Sandstone mottled light gray, firm to hard, friable to brittle, very fine to fine grained, well sorted, subrounded, well cemented with calcareous cement, trace carbonaceous material, trace disseminated pyrite, grading to sandy limestone, no visible porosity, no shows.
5,245.00 to 5,250.00	100% Shale gray brown, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace light gray very fine grained calcareous sandstone laminations, local silty laminations, trace limestone stringers.
5,250.00 to 5,255.00	100% Shale dark gray, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks.
5,255.00 to 5,260.00	100% Shale dark gray brown, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace light gray very fine grained calcareous sandstone laminations with pyrite.
5,260.00 to 5,265.00	 Shale dark gray brown, firm, subblocky, very calcareous, very fine disseminated pyrite and carbonaceous specks, trace light gray very fine grained calcareous sandstone laminations with pyrite. Sandstone mottled light gray, firm to hard, friable to brittle, very fine to fine grained, well sorted, subrounded, well cemented with calcareous cement, trace carbonaceous material, trace disseminated pyrite, grading to sandy limestone, no visible porosity, no shows.
5,265.00 to 5,270.00	100% Shale medium gray, soft to firm, very calcareous, locally silty, trace argillaceous limestone stringers, trace very calcareous sandstone stringers, trace fine disseminated pyrite.
5,270.00 to 5,275.00	100% Shale medium gray, soft to firm, very calcareous, locally silty, trace argillaceous limestone stringers with carbonaceous laminations, trace very calcareous sandstone stringers, trace fine disseminated pyrite.
5,275.00 to 5,280.00	100% Shale medium gray, soft to firm, very calcareous, locally silty, trace argillaceous limestone stringers, trace very calcareous sandstone stringers, trace fine disseminated pyrite.
5,280.00 to 5,285.00	100% Shale gray brown, firm, very calcareous, trace argillaceous limestone stringers, sandstone and siltstone stringers, trace fine disseminated pyrite.
5,285.00 to 5,290.00	 Shale gray brown, firm, very calcareous, trace argillaceous limestone stringers, sandstone and siltstone stringers, trace fine disseminated pyrite. Sandstone light gray, firm to hard, friable to brittle, very fine to fine quartz grains, well sorted, subrounded, well cemented with calcareous cement, no visible porosity, no shows.
5,290.00 to 5,295.00	 Shale gray brown, firm, very calcareous, trace sandstone and siltstone stringers, trace fine disseminated pyrite and carbonaceous specks, trace sandstone stringers. Sandstone light gray, off white, firm to hard, friable to brittle, very fine to fine grained quartz, well sorted, subrounded, calcareous cement, local pyrite cement, no visible porosity, no shows.

Well History Report	Chevron et al Newburn H-23
5,295.00 to 5,300.00	100% Shale medium gray, firm, very calcareous, trace sandstone and siltstone stringers, trace fine disseminated pyrite.
5,300.00 to 5,305.00	100% Shale light to medium gray to gray brown, firm, very calcareous, locally silty, trace sandstone and siltstone stringers, trace fine disseminated pyrite.
5,305.00 to 5,310.00	100% Shale medium to gray brown, firm, very calcareous, locally silty, trace sandstone and siltstone stringers, trace fine disseminated pyrite.
5,310.00 to 5,315.00	100% Shale medium gray to gray brown, firm, very calcareous, locally silty, trace sandstone and siltstone stringers, trace fine disseminated pyrite, trace white limestone.
5,315.00 to 5,320.00	100% Shale medium gray, firm, very calcareous, locally silty, trace sandstone and siltstone stringers, trace fine disseminated pyrite.
5,325.00 to 5,330.00	100% Shale medium gray, soft to firm, very calcareous, trace sandstone and siltstone stringers, trace fine disseminated pyrite, trace white calcareous laminations.
5,330.00 to 5,335.00	100% Shale medium gray brown, soft to firm, very calcareous, locally pyritic, minor trace white limestone.
5,335.00 to 5,340.00	100% Shale medium gray brown, soft to firm, very calcareous, locally pyritic, minor trace white limestone.
5,340.00 to 5,345.00	100% Shale medium gray brown, soft to firm, very calcareous, locally pyritic, trace local calcareous laminations, trace argillaceous limestone stringers.
5,345.00 to 5,350.00	100% Shale medium gray, soft to firm, very calcareous, locally pyritic, locally silty.
5,350.00 to 5,355.00	100% Shale medium gray, soft to firm, very calcareous, locally pyritic, locally silty.
5,355.00 to 5,360.00	100% Shale medium gray, soft to firm, very calcareous, locally pyritic, locally silty.
5,360.00 to 5,365.00	100% Shale medium to dark gray, soft to firm, very calcareous, locally pyritic, locally silty.
5,365.00 to 5,370.00	100% Shale medium to dark gray to gray brown, soft to firm, very calcareous, locally pyritic, trace argillaceous limestone.
5,370.00 to 5,375.00	100% Shale medium to dark gray, soft to firm, very calcareous, locally pyritic, trace argillaceous limestone.
5,375.00 to 5,380.00	No Sample Well control, no sample.
5,380.00 to 5,385.00	No sample Well control, no sample.
5,385.00 to 5,390.00	No sample Well control, no sample.
5,390.00 to 5,395.00	No sample Well control, no sample.

No sample Well control, no sample.

No Sample Well control, no sample.

5,395.00 to 5,400.00

5,400.00 to 5,405.00

5,405.00 to 5,410.00	 Shale gray to gray brown, soft to firm, calcareous, silty, fine carbonaceous specks, calcareous laminations and stringers, trace disseminated pyrite, trace glauconite, trace orange brown calcareous stringers (siderite?), trace loose pyrite; + green very calcareous, grading to limestone. Siltstone light gray, soft to firm, quartz grains, trace feldspar and glauconite, slightly calcareous, carbonaceous specks, grading to silty shale. Sandstone light gray brown, soft to very hard, quartz, trace glauconite, very fine to fine grained, well sorted, subangular, hackly texture, generally well cemented with siliceous cement, calcareous matrix, locally pyritic, poor visible porosity, no shows.
5,410.00 to 5,415.00	 Shale medium gray to gray brown, subblocky, soft to firm, slightly calcareous, silty, in part, fine disseminated carbonaceous specks, calcareous stringers, locally pyritic, trace orange brown calcareous stringers (siderite?). Siltstone light gray, soft to firm, quartz grains, trace feldspar and glauconite, slightly calcareous, carbonaceous specks, grading to silty shale. Sandstone light gray brown, soft to very hard, quartz, trace glauconite, very fine to fine grained, well sorted, subangular, hackly texture, generally well cemented with siliceous cement, calcareous matrix, locally pyritic, poor visible porosity, no shows.
5,415.00 to 5,420.00	 Shale medium gray to gray brown, subblocky, soft to firm, slightly calcareous, silty, in part, fine disseminated carbonaceous specks, calcareous stringers, locally pyritic, trace orange brown calcareous stringers (siderite?). Siltstone light gray, soft to firm, quartz grains, trace feldspar and glauconite, slightly calcareous, carbonaceous specks, grading to silty shale.
5,420.00 to 5,425.00	 Shale medium gray to gray brown, subblocky, soft to firm, slightly calcareous, silty, in part, fine disseminated carbonaceous specks, calcareous stringers, locally pyritic, trace orange brown calcareous stringers (siderite?). Siltstone light gray, soft to firm, quartz grains, trace feldspar and glauconite, slightly calcareous, carbonaceous specks, grading to silty shale.
5,425.00 to 5,430.00	100% Shale medium gray, slightly brownish, blocky, calcareous, commonly silty, frequent disseminated pyrite, rare carbonaceous plant rmns, common white calcite, trace Inoceramus, rare trace sand grains.
5,430.00 to 5,435.00	100% Shale medium gray, slightly brownish, blocky, calcareous, commonly silty, frequent disseminated pyrite, rare carbonaceous plant rmns, common white calcite, trace Inoceramus, rare trace sand grains.
5,435.00 to 5,440.00	100% Shale medium gray, blocky, calcareous, trace pyrite, common calcite, trace Inoceramus.
5,445.00 to 5,450.00	100% Shale medium brownish gray, blocky, calcareous, silty, common trace calcareous vein and nodule.
5,450.00 to 5,455.00	100% Shale medium gray, brownish in part, blocky, silty, trace pyrite, minor very thin siltstone laminae, minor white calcite fragments and occasional veins.
5,455.00 to 5,460.00	100% Shale medium gray and partly light gray, blocky to firm in part, slightly soft, silty, calcareous, common white calcite, veins and fragments.
5,460.00 to 5,465.00	100% Shale medium gray and light gray, blocky to firm, slightly silty, calcareous, trace pyrite, occasional carbonaceous stks and flakes.
5,465.00 to 5,470.00	100% Shale light and medium gray, firm to partly soft and occasionally blocky, calcareous, slightly silty, occasional carbonaceous stks, minor calcite veins.

Chevron	et	al	Newb	ourn H-23	3

Well History	Report
--------------	--------

5,470.00 to 5,475.00	100% Shale medium gray and light gray, blocky to firm, calcareous to slightly calcareous where light gray, common carbonaceous stks &tr pyrite, rare calcite.
5,475.00 to 5,480.00	100% Shale medium gray and light gray, blocky to firm, calcareous to slightly calcareous where light gray, common carbonaceous stks &tr pyrite, rare calcite.
5,480.00 to 5,485.00	100% Shale medium gray, blocky, slightly silty, moderately calcareous, trace calcite, minor fine sand grains.
5,485.00 to 5,490.00	100% Shale medium gray, dark gray in part, blocky, slightly silty, calcareous, common trace carbonaceous flakes and strks, minor white limestone stringers and calcite veins.
5,490.00 to 5,495.00	100% Shale medium gray, dark gray in part, blocky, slightly silty, calcareous, common trace carbonaceous flakes and strks, minor white limestone stringers and calcite veins
5,495.00 to 5,500.00	100% Shale medium to dark gray, blocky, partly silty, calcareous, carbonaceous in part, occasional pyrite, minor white limestone, trace calcite,
5,500.00 to 5,505.00	100% Shale medium to dark gray, blocky, partly silty, calcareous, carbonaceous in part, occasional pyrite, minor white limestone, to occasional gray calcareous and carbonaceous siltstone stringers.
5,505.00 to 5,510.00	 Shale medium to dark gray, blocky, partly silty, calcareous, carbonaceous in part, occasional pyrite, minor white limestone, tocc gray calcareous and carbonaceous siltstone stringers. Siltstone gray, firm friable, argillaceous and calcareous, fairly carbonaceous, trace sand grains.
5,510.00 to 5,515.00	100% Shale medium to dark gray, partly brownish, blocky to firm, calcareous and silty in part, trace calcite, minor siltstone stringers as above.
5,515.00 to 5,520.00	100% Shale medium to dark gray, partly brownish, blocky to firm, calcareous and silty in part, common calcite, trace siltstone stringers.
5,520.00 to 5,525.00	100% Shale medium to dark gray, partly brownish, blocky to firm, calcareous and silty in part, common calcite, trace siltstone stringers.
5,525.00 to 5,530.00	100% Shale medium to dark gray, partly brownish, blocky to firm, calcareous and silty in part, common calcite, trace siltstone stringers.
5,530.00 to 5,535.00	100% Shale medium gray brownish, blocky to firm, slightly silty, partly calcareous, common white calcite or limestone fragments and rare veins, minor light gray siltstone, trace grayish white very fine to fine sandstone.
5,535.00 to 5,540.00	100% Shale medium gray brownish, blocky to firm, slightly silty, partly calcareous, common white calcite or limestone fragments and rare veins, occasional light gray siltstone, trace sand grains.
5,540.00 to 5,545.00	100% Shale medium gray, slightly brownish, blocky, partly calcareous, trace pyrite, occasionally light gray with common carbonaceous material, minor white calcite or limestone fragments.
5,545.00 to 5,550.00	100% Shale medium gray, slightly brownish, blocky, partly calcareous, trace pyrite, rare light gray with common carbonaceous material, occasional white calcite or limestone fragment.
	11 0 D 11 1D 11 O 11 1 D 1 1 1 1 1 1 1 1 1 1

5,550.00 to 5,555.00	100% Shale medium gray, brownish in part, firm to blocky, rarely silty, weakly calcareous, rare trace pyrite, occasional calcite fragment.
5,555.00 to 5,560.00	100% Shale medium gray, blocky, slightly calcareous, silty in part, common white calcite or shell fragments, rare siltstone, trace very fine grained sandstone.
5,560.00 to 5,565.00	100% Shale medium gray, blocky, slightly calcareous, silty in part, common white calcite or shell fragments, trace siltstone
5,565.00 to 5,570.00	90% Shale medium gray brown, firm to blocky in part, partly weakly calcareous, silty, 10% Siltstone grayish white, friable, soft, argillaceous and slightly calcareous, commonly carbonaceous, very fine sandy in part.
5,570.00 to 5,575.00	 Shale medium gray brown, firm to blocky in part, partly weakly calcareous, silty, Siltstone grayish white, friable, soft, argillaceous and slightly calcareous, commonly carbonaceous, very fine sandy in part.
5,575.00 to 5,580.00	 Shale medium gray brown, firm to blocky in part, partly weakly calcareous, silty, Siltstone grayish white, friable, soft, argillaceous and slightly calcareous, commonly carbonaceous, very fine sandy in part.
5,580.00 to 5,585.00	80% Shale brownish gray, blocky to firm, silty, non calcareous, occasional white calcite (fossil?) fragments.
	20% Siltstone light gray to gray white, friable to slightly hard in part, argillaceous, carbonaceous in part, slightly sandy.
5,585.00 to 5,590.00	85% Shale brownish gray, blocky to firm, silty, non calcareous, occasional white calcite (fossil?) fragments.
	15% Siltstone light gray to gray white, friable to slightly hard in part, argillaceous, carbonaceous in part, slightly sandy, grading to very fine grained sandstone in part.
5,590.00 to 5,595.00	90% Shale brownish gray, blocky to firm, silty, non calcareous, occasional white calcite (fossil?) fragments.
	10% Siltstone light gray to gray white, friable to slightly hard in part, argillaceous, carbonaceous in part, slightly sandy, grading to very fine grained sandstone in part.
5,595.00 to 5,600:00	 Shale gray brown, firm, partly blocky, silty, trace calcite (fossil?) fragments. Siltstone light gray, friable, argillaceous, non calcareous, sandy in part, local carbonaceous material.
5,600.00 to 5,605.00	 Shale brown, firm, silty, non calcareous, common siltstone stringers and lenses Sandstone gray white, very fine grained, subrounded and well sorted, moderate hard to friable in part, argillaceous matrix, occasional pyrite cement, trace carbonaceous, no visible porosity, no shows
5,605.00 to 5,610.00	100% Shale brown, firm, silty, minor stringers and lenses siltstone.
5,610.00 to 5,615.00	100% Shale gray brown, firm to blocky in part, silty commonly grading to argillaceous siltstone, trace carbonaceous material, occasional very fine grained sandstone stringer.
5,615.00 to 5,620.00	100% Shale gray brown, firm to blocky in part, silty, trace carbonaceous material, occasional very fine grained sandstone stringer, with common siltstone stringers and laminae.

Chevron et al Newburn H-23

5,620.00 to 5,625.00	100% Shale gray brown, firm to blocky in part, silty, trace carbonaceous material, occasional very fine grained sandstone stringer, with common siltstone stringers and laminae.
5,625.00 to 5,630.00	100% Shale gray brown to gray in part, firm, silty grading to siltstone, common trace pyrite, frequent carbonaceous siltstone stringers, rare calcite fragment.
5,630.00 to 5,635.00	100% Shale gray brown to gray in part, firm, silty grading to siltstone, common trace pyrite, frequent carbonaceous siltstone stringers, rare calcite fragment.
5,635.00 to 5,640.00	100% Shale gray brown, firm, silty, occasional calcite fragment, common thin siltstone stringers, rare very fine sandstone.
5,640.00 to 5,645.00	75% Shale gray brown, firm, silty, occasional calcite fragment, common thin siltstone stringers, rare very fine sandstone.
	25% Siltstone gray white to light gray, friable, argillaceous, partly carbonaceous, grading to and interbedded with shale.
5,645.00 to 5,650.00	100% Shale gray brown, firm, silty, occasional calcite fragment, common thin siltstone stringers, rare very fine sandstone.
5,650.00 to 5,655.00	100% Shale gray brown, firm, silty, occasional calcite fragment, common thin siltstone stringers, rare very fine sandstone.
5,655.00 to 5,660.00	100% Shale brown and gray, firm, silty, occasionally grading to siltstone.
5,660.00 to 5,665.00	100% Shale medium gray partly brownish, firm, silty, common argillaceous siltstone stringers, occasional white clac to limestone fragments, trace loose sand grains.
5,665.00 to 5,670.00	100% Shale medium gray, firm, silty, minor argillaceous siltstone stringers, occasional white clac to limestone fragments, common loose fine sand grains, common trace pyrite.
5,670.00 to 5,675.00	100% Shale medium gray, firm, silty, minor argillaceous siltstone stringers, occasional white calcite to limestone fragments, common loose fine sand grains, common trace pyrite.
5,675.00 to 5,680.00	70% Shale medium gray to brownish in part, firm to blocky, silty, occasional white calcite, trace pyrite, minor argillaceous siltstone stringers and lenses, slightly sandy.
	30% Siltstone light gray to grayish white, friable, argillaceous and trace calcareous, partly sandy, trace carbonaceous.
5,680.00 to 5,685.00	 Shale medium gray to brownish in part, firm to blocky, silty, occasional white calcite, trace pyrite, minor argillaceous siltstone stringers and lenses, slightly sandy. Sandstone light grayish white, very fine grained to silty, subangular and well sorted, partly friable with argillaceous cement to hard with silica cement, minor shaly laminae, tight, no shows.
5,685.00 to 5,690.00	 Shale brown, gray brown in part, firm, silty, occasional calcite. Sandstone white to off white and gray white in part, very fine grained to silty in part, subangular and well sorted, very hard, siliceous, slightly argillaceous, trace glauconite, tight, no shows.
5,690.00 to 5,695.00	 Shale brown, gray brown in part, firm, silty, occasional calcite. Sandstone white to off white, grayish in part, very fine grained to silty, subangular and well sorted, very hard and siliceous, trace glauconite, slightly argillaceous in part, tight, no shows.

5,695.00 to 5,700.00	100% Shale medium gray, firm, sub blocky, mm in part, trace pyrite, common sand grains and rare sandstone stringers or clast.
5,700.00 to 5,705.00	100% Shale medium gray to brownish in part, firm to blocky in part, slightly calcareous, occasional white calcareous fragments and streaks, minor sandstone stringers or clasts and loose sand grains.
5,705.00 to 5,710.00	100% Shale medium gray to brownish in part, firm to blocky in part, slightly calcareous, occasional white calcareous fragments and streaks, minor sandstone stringers or clasts and loose sand grains.
5,710.00 to 5,715.00	100% Shale gray brown, blocky to firm, slightly silty, trace calcareous fragments, trace sandstone clasts.
5,715.00 to 5,720.00	100% Shale gray brown, blocky to firm, slightly silty, trace calcareous fragments, trace sandstone clasts and stringers.
5,720.00 to 5,725.00	100% Shale gray brown, blocky to firm, slightly silty, trace calcareous fragments, trace sandstone stringers and clasts.
5,725.00 to 5,730.00	100% Shale brownish gray, blocky, slightly silty, minor siltstone stringers, trace calcareous fragments, occasional very fine sandstone clasts.
5,730.00 to 5,735.00	100% Shale medium gray, firm to soft in sample, amorphous, frequent calcareous lenses, fragments and streaks, occasional siltstone.
5,735.00 to 5,740.00	100% Shale medium gray, firm to soft in sample, amorphous, frequent calcareous lenses, fragments and streaks, occasional siltstone.
5,740.00 to 5,745.00	100% Shale medium gray, blocky to firm, slightly silty, occasional calcareous fragments, common very fine sandstone clasts and stringers.
5,745.00 to 5,750.00	100% Shale medium gray, blocky to firm, slightly silty, occasional calcareous fragments, common very fine sandstone clasts and stringers.
5,750.00 to 5,755.00	100% Shalebrownish gray, blocky and firm, silty, occasional calcareous fragments, minor partly sandy siltstone stringers and clasts.
5,755.00 to 5,760.00	100% Shale brownish gray, blocky and firm, silty, occasional calcareous fragments, minor partly sandy siltstone stringers and clasts.
5,760.00 to 5,765.00	100% Shale brownish gray, blocky to firm, silty in part, occasional siltstone.
5,765.00 to 5,770.00	 Shale medium brownish gray, bly and firm, silty, common calcareous fragments, minor siltstone interbeds. Siltstone light gray to gray white, friable, argillaceous, sandy in part, locally becoming very fine grained sandstone, trace carbonaceous material.
5,770.00 to 5,775.00	 Shale medium brownish gray, bly and firm, silty, common calcareous fragments, minor siltstone interbeds. Sandstone off white, very fine grained, subrounded and well sorted, hard and siliceous, no visible porosity, no shows, common loose sand grains.
5,775.00 to 5,780.00	100% Shale medium brownish gray, blocky and firm, silty in part, occasional calcareous fragments, minor siltstone and rare sandstone, trace pyrite.

Chevron	et	al	New	hurn	H-23
CHEVIOL	CL	aı	TACM	vuin	11-23

5,780.00 to 5,785.00	100% Shale medium brownish gray, blocky and firm, silty in part, occasional calcareous fragments, minor siltstone and rare sandstone, trace pyrite.
5,785.00 to 5,790.00	100% Shale medium brown to gray brown, subblocky to amorphous, soft to firm, silty in part, calcareous, minor light gray siltstone lamsmnr trace calcareous laminations.
5,790.00 to 5,795.00	100% Shale medium brown to gray brown, subblocky, soft to firm, silty, calcareous, minor light gray siltstone laminations, minor trace calcareous laminations.
5,795.00 to 5,800.00	100% Shale medium brown to gray brown, subblocky, soft to firm, silty, calcareous, locally pyritic, minor light gray siltstone laminations, trace light gray to off white very fine grained sandstone laminations, trace calcareous laminations.
5,800.00 to 5,805.00	 Shale light to medium brown, trace green, subblocky, soft to firm, silty, calcareous, locally pyritic, minor light gray siltstone laminations, trace calcareous laminations. Siltstone light gray, soft, friable, carbonaceous in part.
5,805.00 to 5,810.00	100% Shale brown, subblocky to amorphous, soft to firm, silty, calcareous, locally pyritic, minor light gray siltstone laminations, trace calcareous laminations.
5,810.00 to 5,815.00	100% Shale light gray brown to brown, subblocky, soft to firm, silty, calcareous, locally pyritic, minor light gray siltstone laminations, common calcareous fragments and limestone stringers.
5,815.00 to 5,820.00	100% Shale gray, subblocky, soft to firm, silty, very calcareous, local fine disseminated pyrite, carbonaceous specks, trace white limestone stringers.
5,820.00 to 5,822.50	 85% Shale gray, subblocky, soft to firm, silty, very calcareous, local fine disseminated pyrite, carbonaceous specks, trace white limestone stringers. 15% Sand predominately loose very fine clear quartz grains, trace feldspar, subrounded, well sorted, occasionally weakly consolidated with calcareous cement, friable, trace carbonaceous specks, trace white limestone stringers, no visible porosity, no shows.
5,822.50 to 5,825.00	 Shale gray, subblocky, soft to firm, silty, very calcareous, local fine disseminated pyrite, carbonaceous specks, trace white limestone stringers. Sand predominately loose very fine clear quartz grains, trace feldspar, subrounded, well sorted, occasionally weakly consolidated with calcareous cement, friable, trace carbonaceous specks, trace white limestone stringers, no visible porosity, no shows.
5,825.00 to 5,830.00	100% Shale light gray to gray brown, subblocky, firm, brittle, calcareous, calcareous stringers and micro laminae, silty in part, fine disseminated pyrite, trace carbonaceous specks.
5,830.00 to 5,835.00	100% Shale light gray to gray brown, subblocky, firm, brittle, calcareous, calcareous stringers and micro laminae, silty in part, fine disseminated pyrite, trace carbonaceous specks, trace white limestone fragments.
5,835.00 to 5,840.00	100% Shale medium brown to gray brown, subblocky, firm to hard, brittle, calcareous, silty in part, fine disseminated pyrite, trace carbonaceous specks, minor white limestone fragments and stringers.
5,840.00 to 5,845.00	100% Shale gray brown, subblocky, firm to moderately hard, brittle, calcareous, silty in part, fine disseminated pyrite, trace limestone stringers and micro laminations.
5,845.00 to 5,850.00	100% Shale gray brown, subblocky, firm to moderately hard, brittle, calcareous, silty in part, fine disseminated pyrite and loose pyrite, trace limestone fragments.

5,850.00 to 5,855.00	100% Shale gray brown, subblocky, firm to moderately hard, brittle, calcareous, silty in part, fine disseminated pyrite, trace calcareous laminations with pyrite.
5,855.00 to 5,860.00	100% Shale gray brown, subblocky, firm to moderately hard, brittle, calcareous, silty in part, trace fine glauconite? in the shale, fine disseminated pyrite, common white limestone fragments.
5,860.00 to 5,865.00	100% Shale gray brown, subblocky, firm to moderately hard, brittle, calcareous, silty in part, fine disseminated pyrite, trace limestone fragments, trace carbonaceous specks.
5,865.00 to 5,870.00	100% Shale gray brown, subblocky, firm to moderately hard, brittle, calcareous, silty in part, fine disseminated pyrite, trace limestone fragments, trace carbonaceous specks.
5,870.00 to 5,875.00	100% Shale gray to brown gray, firm, brittle, very calcareous, silty, fine disseminated pyrite, trace calcareous fragments, trace lignite with pyrite and calcite.
5,875.00 to 5,880.00	100% Shale gray brown, firm, brittle, very calcareous, inc in silt and fine disseminated pyrite, trace calcareous fragments, locally grading to siltstone.
5,880.00 to 5,885.00	100% Shale medium brown, subblocky, firm, brittle, very calcareous, silty, fine disseminated and loose pyrite, trace limestone laminations and fragments.
5,885.00 to 5,890.00	100% Shale medium brown, subblocky, firm, brittle, very calcareous, silty, fine disseminated and loose pyrite, trace limestone laminations and fragments.
5,890.00 to 5,895.00	100% Shale medium brown, subblocky, firm, brittle, very calcareous, silty, fine disseminated and loose pyrite, abundant limestone fragments.
5,895.00 to 5,900.00	100% Shale medium brown, subblocky, firm, brittle, very calcareous, silty, fine disseminated and loose pyrite, trace limestone fragments, minor trace loose sand grains.
5,900.00 to 5,905.00	100% Shale medium gray brown, firm, brittle, calcareous, silty in part, fine disseminated pyrite, trace limestone fragments.
5,905.00 to 5,910.00	100% Shale medium gray brown, firm, brittle, calcareous, silty in part, fine disseminated pyrite, trace limestone fragments.
5,910.00 to 5,915.00	100% Shale medium gray brown, firm, brittle, calcareous, silty in part, fine disseminated pyrite, trace limestone fragments.
5,915.00 to 5,920.00	100% Shale medium gray brown, firm, brittle, calcareous, silty in part, fine disseminated pyrite, trace limestone fragments.
5,920.00 to 5,925.00	100% Shale medium brown, firm, brittle, slightly calcareous, silty in part, fine disseminated pyrite.
5,925.00 to 5,930.00	100% Shale light to medium gray brown, firm, brittle, slightly calcareous, silty in part, fine disseminated pyrite.
5,930.00 to 5,935.00	100% Shale light to medium gray brown, firm, brittle, slightly calcareous, inc in silt content + silty laminae, fine disseminated and nodular pyrite, trace white limestone fragments and laminations.
5,935.00 to 5,940.00	100% Shale medium gray brown, firm, brittle, slightly calcareous, silty + light gray silty laminae, fine disseminated and nodular pyrite, trace white limestone fragments and laminations.

Chevron	et	al	New	hurn	H-23
CHEALOH	CL	aı	TICM	uuii	11-23

Well History Repor	port
--------------------	------

5,940.00 to 5,945.00	100% Shale medium gray, firm, brittle, slightly calcareous, silty, common light gray coarse silt laminae, fine disseminated and nodular pyrite, trace carbonaceous laminations.
5,945.00 to 5,950.00	 50% Shale medium gray, firm, brittle, slightly calcareous, silty, common light gray coarse silt laminae, fine disseminated and nodular pyrite, trace carbonaceous laminations. 50% Siltstone light gray to off white, soft to firm, friable, coarse silt to very fine sand, arenaceous, quartz grains, trace carbonaceous laminations, locally slightly calcareous.
5,950.00 to 5,955.00	 50% Shale medium gray, firm, brittle, slightly calcareous, silty, common light gray coarse silt laminae, fine disseminated and nodular pyrite, trace carbonaceous laminations. 50% Siltstone light gray to off white, soft to firm, friable, coarse silt to very fine sand, arenaceous, quartz grains, trace carbonaceous laminations, locally slightlycalcareous, grading to very fine grained sandstone.
5,955.00 to 5,960.00	 Sandstone light gray to off white, soft, friable, quartz, very fine grained, well sorted, poorly cemented with calcareous cement, poor visible porosity; + loose unconsolidated quartz grains, very fine to lower fine grained, moderately well sorted, subrounded, no shows. Siltstone light gray to off white, soft to firm, friable, coarse silt to very fine sand, arenaceous, quartz grains, trace carbonaceous laminations, locally slightly calcareous,
	grading to very fine grained sandstone. 20% Shale medium gray, firm, brittle, slightly calcareous, silty, common light gray coarse silt laminae, fine disseminated and nodular pyrite, trace carbonaceous laminations.
5,960.00 to 5,965.00	100% Shale medium gray brown, soft to firm, slightly calcareous, silty in part, trace fine disseminated pyrite.
5,965.00 to 5,970.00	100% Shale medium gray brown, soft to firm, slightly calcareous, silty in part, trace fine disseminated pyrite, trace brown calcareous stringers.
5,970.00 to 5,975.00	100% Shale medium gray brown, soft to firm, slightly calcareous, silty, trace fine disseminated pyrite, trace siliceous sandy stringers with pyrite and carbonaceous material, trace white calcareous laminae.
5,975.00 to 5,980.00	100% Shale gray brown, soft to firm, non to slightly calcareous, silty, trace fine disseminated pyrite, trace white calcareous laminae.
5,980.00 to 5,985.00	100% Shale gray brown, soft to firm, non to slightly calcareous, silty, trace fine disseminated pyrite, trace white calcareous laminae.
5,985.00 to 5,990.00	100% Shale brown, soft, non to slightly calcareous, pyrite lenses, trace silt laminae.
5,990.00 to 5,995.00	100% Shale brown, soft, calcareous, trace pyrite micro nodules, trace brown calcareous laminations.
5,995.00 to 6,000.00	100% Shale brown, soft, calcareous, trace pyrite micro nodules, trace brown calcareous laminations and white limestone stringers.
6,000.00 to 6,005.00	100% Shale brown to gray brown, soft, calcareous, pyrite lenses, silty in part, trace white limestone fragments.
6,005.00 to 6,010.00	100% Shale brown to gray brown, soft, calcareous, pyrite lenses + loose pyrite, minor light gray brown silty laminae, trace white limestone fragments.
6,010.00 to 6,015.00	100% Shale brown to gray brown, soft, calcareous, minor pyrite lenses, minor light gray brown silty laminae, trace white limestone fragments and stringers.

Well	History	Report
------	---------	--------

Chevron et al Newburn H-23

6,015.00 to 6,020.00	100% Shale brown to gray brown, firm, brittle, slightly calcareous, locally silty, fine disseminated pyrite.
6,020.00 to 6,025.00	100% Shale gray brown, soft to firm, brittle, calcareous, fine disseminated pyrite.
6,025.00 to 6,030.00	100% Shale gray brown, soft to firm, brittle, calcareous, fine disseminated pyrite, trace white limestone frgs and stringers.
6,030.00 to 6,035.00	100% Shale gray brown, soft to firm, brittle, calcareous, trace light gray silty laminations, fine disseminated pyrite, trace orange brown siderite?
6,035.00 to 6,040.00	100% Shale light gray brown to brown, soft to firm, brittle, non to slightly calcareous, trace light gray silty laminations, fine disseminated pyrite, trace carbonaceous specks.
6,040.00 to 6,045.00	100% Shale gray brown, soft to firm, brittle, calcareous, locally silty, fine disseminated pyrite, trace carbonaceous specks, trace white limestone laminae.
6,045.00 to 6,050.00	100% Shale light gray to gray brown, soft to firm, brittle, slightly calcareous, locally silty, fine disseminated pyrite, trace carbonaceous specks.
6,050.00 to 6,055.00	100% Shale light gray to gray brown, soft to firm, brittle, slightly calcareous, locally silty, fine disseminated pyrite, trace carbonaceous specks, trace orange brown siderite?.
6,055.00 to 6,060.00	100% Shale light gray to gray brown, soft to firm, brittle, slightly calcareous, locally silty, fine disseminated pyrite, trace carbonaceous specks.
6,060.00 to 6,065.00	100% Shale gray brown, soft to firm, brittle, slightly calcareous, fine disseminated pyrite, trace carbonaceous specks, trace brown limestone.
6,065.00 to 6,070.00	100% Shale gray brown, light gray, soft to firm, brittle, calcareous, fine disseminated pyrite, trace carbonaceous specks, trace white limestone stringers.

Appendix P Detailed Sidewall Core Descriptions

Appendix P
Detailed Sidewall Core Descriptions

Newburn H-23 Summary of Sidewall Coring Programme

Well Name				Hole Size Date					
Che	vron et al N	ewburn H-23	3	4	31.8 mm (17")				June 13, 2002
Interval				Number of Sidewall Cores					
1944m to	3481m (F	Run #1)		Re	equested 25		Obtained 25	l	Lost 0
Core	Depth	Recovery			Analys	es			Final Disposition of Sidewall
No.	(m)	(cm)	Bio- strat	Routine Core Analysis	Xray Diffraction	Whole Core Photos	Thin Section	Rock Eval	Cores
1	2104	5	х					x	*Chevron Canada Resources
2	2413.5	4	х					X	*Chevron Canada Resources
3	2535	4.5	х					х	*Chevron Canada Resources
4	3033	5	х					х	*Chevron Canada Resources
5	3481	5	х		х			х	*Chevron Canada Resources
6	3373	5	х		х			х	*Chevron Canada Resources
7	3236	5	х		х			х	*Chevron Canada Resources
8	3139	5	х		х			х	*Chevron Canada Resources
9	3004	5	х					х	*Chevron Canada Resources
10	2903	4.5	х		х			х	*Chevron Canada Resources
11	2883	5	х					х	*Chevron Canada Resources
12	2858	4.5	х					х	*Chevron Canada Resources
13	2815	4.8	х					х	*Chevron Canada Resources
14	2759	4.5	х					х	*Chevron Canada Resources
15	2677	5	х					х	*Chevron Canada Resources
16	2635	5	х					х	*Chevron Canada Resources
17	2497.3	5	х					х	*Chevron Canada Resources
18	2364	5	х					х	*Chevron Canada Resources
19	2323.5	5	х					х	*Chevron Canada Resources
20	2269.5	5	х					х	*Chevron Canada Resources
21	2230.5	5	х					х	*Chevron Canada Resources
22	2199	5	х					х	*Chevron Canada Resources
23	2157	5	х					×	*Chevron Canada Resources
24	2030	5	х					х	*Chevron Canada Resources
25	1944	4.8	х					х	*Chevron Canada Resources
		ļ					ļ	ļ	
<u></u>			<u> </u>				-		
			<u> </u>					<u> </u>	<u> </u>

^{*} Sidewall cores temporarily retained by Chevron Canada Resources, 500 5th Avenue S.W., Calgary, Alberta for possible additional analyses. Please contact Phil Nantais at (430) 234-5290.

Newburn H-23 Summary of Sidewall Coring Programme

	Well N			215	Hole Size Date 317.5 mm (12 1/4") June 27, 2002				
Chevron et al Newburn H-23						har of Sida	June 27, 2002 er of Sidewall Cores		
Interval 3503m to 4424m (Run#2)			Re	equested 24	Nun	Obtained 24	1	Lost 0	
Core Depth Recovery No. (m) (cm) Rio			Analyses			Thin	Rock	Final Disposition of Sidewall Cores	
	()	,	Bio- strat	Routine Core Analysis	Xray Diffraction	Whole Core Photos	Section	Eval	
1	4277.7	5	×						*Chevron Canada Resources
2		3						X	*Chevron Canada Resources
	4233.4		X		X			X	*Chevron Canada Resources
3	4112.8	5	Х		X			X	*Chevron Canada Resources
4	4043.2	4.5	X					X	*Chevron Canada Resources
5	3989	3.5	X		X	<u> </u>	ļ	X	
6	4317.5	4.5		X	X	X	X		*Chevron Canada Resources
7	4362.3	3.5	X				ļ	X	*Chevron Canada Resources
8	4353.5	4.5		X	X	X	X		*Chevron Canada Resources
9	4390	4	Х					X	*Chevron Canada Resources
10	4354.5	5		X	х	X	×		*Chevron Canada Resources
11	4349.7	5		X	х	X	x		*Chevron Canada Resources
12	4325.5	5		х	x	x	X	X	*Chevron Canada Resources
13	4323	5		х	х	х	x		*Chevron Canada Resources
14	4319.8	4		х	х	x	x		*Chevron Canada Resources
15	4318.5	4.5		x	х	х	x		*Chevron Canada Resources
16	4313.5	5		х	х	x	x		*Chevron Canada Resources
17	4312.8	5		x	x	x	x	<u> </u>	*Chevron Canada Resources
18	4307.8	5		x	х	х	х	x	*Chevron Canada Resources
19	3973.5	5	х					x	*Chevron Canada Resources
20	3942	4	х					х	*Chevron Canada Resources
21	3906.5	4.5	х					х	*Chevron Canada Resources
22	3808.9	4	х		х			х	*Chevron Canada Resources
23	3743	5	х					x	*Chevron Canada Resources
24	3701	3.5	х		х			х	*Chevron Canada Resources
								ļ	
		<u> </u>	 			 	ļ		
						 	 		
L	1	<u> </u>		<u> </u>	<u></u>	<u></u>	<u> </u>	<u> </u>	

^{*} Sidewall cores temporarily retained by Chevron Canada Resources, 500 5th Avenue S.W., Calgary, Alberts for possible additional analyses. Please contact Phil Nantais at (430) 234-5290.

Newburn H-23 Summary of Sidewall Coring Programme

Well Name					Hole Size Date					
Che	vron et al N	ewburn H-23	3	2	16 mm (8 1/2")	July 23, 2002				
Interval				Number of Sidewall C					ı	
4405m to	5425m (F	Run #3)		Re	equested 25		Obtained 22		Lost 3	
Core	Depth	Recovery		Analyses					Final Disposition of Sidewall	
No.	(m)	(cm)	Bio- strat	Routine Core Analysis	Xray Diffraction	Whole Core Photos	Thin Section	Rock Eval	Cores	
1	4780.5	4	х					х	*Chevron Canada Resources	
2	5213.5	4.5			x	х	x	X	*Chevron Canada Resources	
3	5208.5	2			x	X	x	Х	*Chevron Canada Resources	
4	5203.8	4			x	х	х	x	*Chevron Canada Resources	
5	5198.5	3.5			x	x	x	х	*Chevron Canada Resources	
6	5195.3	2.5			х	x	х	х	*Chevron Canada Resources	
7	5422.5	Lost							*Chevron Canada Resources	
8	5408.5	4.5		х	х	х	х		*Chevron Canada Resources	
9	5407.5	3		х	х	х	х		*Chevron Canada Resources	
10	5407	2.5		х	х	х	х		*Chevron Canada Resources	
11	5406.5	4.5		х	х	х	х		*Chevron Canada Resources	
12	5403.6	5		х	х	х	х		*Chevron Canada Resources	
13	5368	Lost							*Chevron Canada Resources	
14	5315.8	4.5	х		х			х	*Chevron Canada Resources	
15	5189	4.7			х	x	х	х	*Chevron Canada Resources	
16	5186.5	4			х	x	x	х	*Chevron Canada Resources	
17	5144.3	Lost							*Chevron Canada Resources	
18	5133.8	3			х	х	х	х	*Chevron Canada Resources	
19	5129	4.5			х	х	x	х	*Chevron Canada Resources	
20	5096	3.5	х		х			х	*Chevron Canada Resources	
21	5063	4			х	х	х	х	*Chevron Canada Resources	
22	5100.8	5			х	х	х	х	*Chevron Canada Resources	
23	4780.4	4.5			х	х	х	х	*Chevron Canada Resources	
24	4913.3	4.5		х	х	х	х		*Chevron Canada Resources	
25	4960	4.5			х	х	х	х	*Chevron Canada Resources	
			ļ					<u> </u>		
							<u> </u>			
								-		
		<u> </u>	L	<u> </u>	L	l	<u></u>	L	<u> </u>	

^{*} Sidewall cores temporarily retained by Chevron Canada Resources, 500 5th Avenue S.W., Calgary, Alberta for possible additional analyses. Please contact Phil Nantais at (430) 234-5290.

Newburn H-23 Summary of Sidewall Coring Programme

Well Name Chevron et al Newburn H-23				1	Hole Size 65 mm (6 1/2")				Date August 9, 2002
Interval	vion et ai iv	ewbui ii 11-2.	,	Number of Sidewall					rugust 7, 2002
	o 6070m (F	Run #4)		Re	equested 9		Obtained 9		Lost 0
Core	Depth	Recovery			Analys	es			Final Disposition of Sidewall
No.	(m)	(cm)	Bio- strat	Routine Core Analysis	Xray Diffraction	Whole Core Photos	Thin Section	Rock Eval	Cores
1	5962.8	5		х	х	х	х		*Chevron Canada Resources
2	5962	5		х	х	х	х		*Chevron Canada Resources
3	5961.7	4		х	х	х	х		*Chevron Canada Resources
4	5961.2	5		х	х	х	х		*Chevron Canada Resources
5	5960.5	4.75		х	х	х	х		*Chevron Canada Resources
6	5957.8	4.5		х	х	х	х		*Chevron Canada Resources
7	5940	4.5	Х					х	*Chevron Canada Resources
8	5797.5	5	х					х	*Chevron Canada Resources
9	~5961	5		х	х	х	х		*Chevron Canada Resources
			<u> </u>						
			-						
			<u> </u>						
		 	-						

^{*} Sidewall cores temporarily retained by Chevron Canada Resources, 500 5th Avenue S.W., Calgary, Alberta for possible additional analyses. Please contact Phil Nantais at (430) 234-5290.

Chevron et al Newburn H-23 Detailed Sidewall Core Descriptions

431.8mm (17") hole section Interval: 1904m to 3520 m

Attempted: 25 Recovered: 25

Detailed Sidewall Core Descriptions

Core #1: 2104m (5cm)

Claystone: gray brown, firm, amorphous in part, silty, trace carbonaceous.

Core #2: 2413.5m (4cm)
Claystone: gray, silty, firm.

Core #3: 2535m (4.5cm)

Claystone: gray to brownish, firm, trace pyrite, cut by fracture.

Core #4: 3033m (5cm)

Claystone: gray, firm, moderately well indurated, calcareous, silty in part, minor beige argillaceous

limestone nodule or inclusions.

Core #5: 3481m (5cm)

Claystone: gray, moderately hard, slightly silty, wlkly calcareous, cut by brownish calcareous laminae.

Core #6: 3373m (5cm)

Claystone: medium to dark gray, blocky, dense, rarely silty, weakly calcareous.

Core #7: 3236m (5cm)

<u>Claystone:</u> medium gray, brownish in part, firm to blocky, slightly silty, calcite to locally marly, trace thin marly laminae.

Core #8: 3139m (5cm)

<u>Claystone:</u> medium gray, brownish in part, firm to blocky, slightly silty, calcite to locally marly, trace thin marly laminae.

Core #9: 3004m (5cm)

Marlstone: green gray, argillaceous, blocky, moderately hard, rarely silty.

Core #10: 2903m (4.5cm)

Clavstone: medium gray, dark gray in part, dense, blocky, trace pyrite, cut by a fracture.

Core #11: 2883m (5cm)

Marlstone: light gray greenish, dense, common carbonaceous flakes.

Core #12: 2858m (4.5cm)

Claystone: light gray green, blocky, calcareous, cut by a fracture.

Core #13: 2815m (4.8cm)

Marlstone: very light grayish green, dense, common carbonaceous specks.

Core #14: 2759m (4.5cm)

Claystone: gray, firm to dense, calcareous, fractured.

Core #15: 2677m (5 cm)

Claystone: gray, slightly brown, firm, moderately calcareous, trace silty.

Core #16: 2635m (5 cm)

Claystone: brownish gray, firm, calcareous, silty in part, trace pyrite.

Core #17: 2497.3m (5 cm)

Claystone: brown gray, firm, calcareous, slightly silty, trace pyrite.

Core #18: 2364m (5 cm)

Claystone: brown to gray brown, firm.

Core #19: 2323.5m (5 cm)

Claystone: brown, firm to blocky.

Core #20: 2269.5m (5 cm)

Claystone: brown, firm to blocky.

Core #21: 2230.3m (5 cm)

Claystone: brown, firm and blocky.

Core #22: 2199m (5 cm)

Claystone: brown, firm to blocky.

Core #23: 2157m (5 cm)

Claystone: brown, firm to blocky.

Core #24: 2030m (5 cm)

Claystone: gray brown, firm, silty in part.

Core #25: 1944m (4.8 cm)

Claystone: greenish gray, firm, amorphous, slightly silty.

317.5mm (12 1/4") hole section Interval: 3503m to 4424m

Attempted:

24

Recovered:

: 24

<u>Detailed Sidewall Core Descriptions</u>

Core #1: 4277.7m (5cm)

Claystone: brown gray, firm, slightly calcareous, silty, fracture along long axis of the core.

Core #2: 4233.4m (3cm)

<u>Claystone:</u> dark gray brown, firm, slightly calcareous, very silty, fine carbonaceous specks, fracture along long axis of the core.

Core #3: 4112.8m (5 cm)

<u>Claystone:</u> dark gray brown, firm, very slightly calcareous, silty, quartz and orange feldspar grains, fine disseminated pyrite, exhibits conchoidal fracture.

Core #4: 4043.2m (4.5cm)

Claystone: dark gray brown, firm, very slightly calcareous, silty, fine carbonaceous specks.

Core #5: 3989m (3.5cm) (fractured)

Claystone: medium gray, firm, silty, dolomitic, fine carbonaceous specks.

Core #6: 4317.5m (4.5cm)

<u>Conglomeratic Sandstone:</u> varicoloured gray, firm to hard, fine to pebble size grains, poorly sorted, fine grained matrix, calcareous cement, trace carbonaceous micro-laminations, patchy good – very good visible porosity, no show.

Core #7: 4362.3m (3.5cm)

Claystone: dark gray black, firm, slightly calcareous, silty in part, fracture along long axis of the core.

Core #8: 4353.5m (4.5cm)

<u>Sandstone:</u> gray, firm to hard, very fine to fine grained, well sorted, subrounded, quartz grains, trace feldspar and glauconite, well cemented with calcareous cement or matrix, patchy fair visible porosity, no shows.

Core #9: 4390.0m (4cm)

<u>Claystone:</u> dark gray to gray black, firm, slightly calcareous, silty in part, trace disseminated and nodular pyrite, fracture along long axis of core.

Core #10: 4354.5m (5cm)

<u>Sandstone:</u> light gray, firm to hard, quartz grains, trace glauconite and feldspar grains, fine grained, well sorted, subrounded grains, well cemented with a calcite cement, patchy fair visible porosity, no show; shale and carbonaceous micro laminations along the long axis of the core.

Core #11: 4349.7m (5cm)

<u>Sandstone</u>: light gray, firm to hard, quartz grains, trace glauconite and feldspar grains, fine grained, well sorted, subrounded grains, well cemented with calcite cement, patchy fair visible porosity, no show.

Core #12: 4325.5m (5cm)

<u>Claystone with sandy laminations / sections</u>: dark gray, firm, slightly calcareous, local fine to medium subrounded to subangular quartz grains, patchy poor visible porosity where sandy.

Core #13: 4323m (5cm)

<u>Pebble conglomerate:</u> varicoloured, pebble size (chert, clastics, carbonates) in a strongly calcareous very fine sand matrix, patchy visible porosity in the matrix, no show.

Core #14: 4319.8m (4 cm)

<u>Conglomeratic sandstone:</u> light gray, very fine to very coarse grained, quartz grains, minor lithic fragments, subrounded to subangular, well cemented with a strongly calcareous matrix or cement, patchy very poor visible porosity, no show.

Core #15: 4318.5m (4.5cm)

<u>Sandstone:</u> gray, firm becoming friable, fine to medium quartz grains, poorly sorted, subrounded to subangular, weakly cemented with calcareous cement, patchy visible porosity (it may be better than observed as the sample was covered on the surface with the residue of drilling mud); carbonaceous shale micro-laminations along the long axis of the core.

Core #16: 4313.5m (5cm)

<u>Sandstone</u>: gray, firm becoming friable, very fine to fine quartz grains, poorly sorted, subrounded to subangular, weakly cemented with calcareous cement, patchy visible porosity (it may be better than observed as the sample was covered on the surface with the residue of drilling mud); carbonaceous shale micro-laminations along the long axis of the core.

Core #17: 4312.8m (5cm)

Sandstone: light gray, firm to hard, very fine to fine grained quartz, well sorted, subrounded to subangular grains, well cemented with a very strong calcareous cement, no visible porosity, no show; trace carbonaceous micro-laminations.

Core #18: 4307.8m (5cm)

Claystone: medium to dark gray, soft to firm, very slightly calcareous, silty, trace carbonaceous specks, and micro-laminations.

Core #19: 3973.5m (5cm) (fracture along long axis of core)

Claystone: dark gray black, firm, very slightly calcareous, silty, trace carbonaceous specks.

Core #20: 3942.0m (4cm)

Claystone: dark gray black, firm, slightly calcareous.

Core #21: 3906.5m (4.5cm)

Claystone: dark gray black, firm, slightly calcareous.

Core #22: 3808.9m (4cm)

Claystone: dark gray black, firm, slightly calcareous, it has one beige marly section.

Core #23: 3743.0m (5cm)

Claystone: dark gray black, firm, slightly calcareous.

Core #24: 3701.0m (3.5cm) (broken up)

Claystone: dark gray black, firm, slightly calcareous.

216mm (8 1/2") hole section Interval: 4405m to 5425m

Attempted:

Recovered: 22

Detailed Sidewall Core Descriptions

25

Core #1: 4780.5 (4cm)

Shale: dark gray to black, silty, carbonaceous in part, blocky.

Core #2: 5213.5 (4.5cm)

Shale: medium gray to black, micromicaceous in part, slightly silty, cut by a limestone stringer. <u>Limestone</u>: gray white, hard and dense, very fine to fine crystalline, slightly argillaceous.

Core #3: 5208.5 (2cm)

Marlstone: medium gray, hard and dense, argillaceous grading to shale in part, thinly laminated, locally becoming argillaceous limestone.

Core #4: 5203.8 (4 cm)

Claystone: medium gray, brownish in part, blocky, calcareous, partly silty.

Core #5: 5198.5 (3.5 cm)

Shale: medium gray, blocky, calcareous, slightly silty.

Core #6: 5195.3 (2.5 cm)

Limestone: white, hard dense, microcrystalline, 1 cm thick laminae with claystone above and below.

Claystone: medium gray, partly brownish, blocky, calcareous, broken on bedding planes.

Core #7: 5422.5 (lost core)

Core #8: 5408.5 (4.5 cm)

<u>Sandstone</u>: light brownish to off white, very fine to partly fine grained, sub rounded and moderately well sorted, moderately hard and dense, slightly calcareous, trace of glauconite, possible 8 to 10 percent porosity, no visible show.

Core #9: 5407.5 (3 cm)

<u>Sandstone:</u> light brownish, very fine grained to silty, sub rounded and moderately well sorted, hard and dense, very slightly calcareous, silica cement with argillaceous matrix, poor porosity, no show.

Core #10: 5407.0 (2.5 cm)

<u>Sandstone</u>: light brownish, very fine grained to silty, sub rounded and moderately well sorted, hard and dense, very slightly calcareous, trace of glauconite, traces of carbonaceous flakes, silica cement with argillaceous matrix, poor porosity, no show.

Core #11: 5406.5 (4.5 cm)

<u>Sandstone</u>: light brownish white, very fine to partly fine grained, sub rounded and moderately well sorted, moderately hard, trace calcareous, siliceous cement with argillaceous matrix, trace glauconite, poor visible pin point porosity, no show, black shale laminae and possible intraclasts.

Core #12: 5403.6 (5 cm)

<u>Sandstone:</u> light brownish white, very fine grained to silty in part, sub rounded to sub angular, fairly well sorted, hard and dense, slightly calcareous, siliceous cement, argillaceous matrix, common carbonaceous flakes and banding, poor porosity, no shows.

Core #13: 5368.0 (Lost Core)

Core #14: 5315.8 (4.5 cm)

<u>Claystone:</u> light to medium gray, slightly brownish in part, firm to slightly platy, calcareous to locally marly, common trace of pyrite.

Core #15: 5189.0 (4.7 cm)

Claystone: medium gray, calcareous, common trace disseminated pyrite.

Core #16: 5186.5 (4.0 cm)

Shale: medium gray, micromicaceous, calcareous, one fracture parallel to core axis.

Core #17: 5144.3 (Lost Core)

Core #18: 5133.8 (3 cm)

Shale: medium gray, micromicaceous, calcareous, blocky.

Core #19: 5129.0 (4.5 cm)

Shale: medium gray, blocky, calcareous to marly in part, fractured.

Core #20: 5096.0 (3.5 cm)

Claystone: medium gray, blocky, trace calcareous, 2 fractures parallel to core.

Core #21: 5063.0 (4.0 cm)

Shale: black, slightly micromicaceous, sub platy, moderately calcareous, commonly cut by very thin silty

laminae.

Core #22: 5100.8

Shale: medium to dark gray, blocky, slightly calcareous, trace silty, one fracture parallel to core.

Core #23: 4780.4 (4.5 cm)

Claystone: medium gray, slightly calcareous, dense, fractured along core axis.

Core #24: 4913.8 (4.5 cm)

Siltstone: medium gray, non calcareous, dense, brittle, hard and siliceous, very argillaceous to shaly in

part, fractured along core axis.

Core # 25: 4960.0 (4.5 cm)

Shale: medium to dark gray, sub platy, moderately calcareous, common silty bedding planes, fractured.

165mm (6 1/2") hole section

Interval: 5405m to 6070m

Attempted:

9

9 Recovered:

Detailed Sidewall Core Descriptions

Core #1: 5962.8m (5cm)

Interbedded Sandstone & Shale

Sandstone: gray, hard, quartz grains, appears to be very fine grained, well cemented with calcareous

cement, trace fine pyrite. Shale: dark gray black, soft.

Core #2: 5962.0m (5cm)

Core #3: 5961.7m (4cm)

Sandstone: gray, firm to hard, quartz and trace feldspar, appears to be upper very fine to lower fine grained, well cemented with calcareous and siliceous cement, calcareous matrix, minor carbonaceous laminations, patchy fair to good visible porosity.

Sandstone with a shale stringer

Sandstone: gray, hard, quartz & trace feldspar, appears to be very fine to fine grained, well cemented with calcareous cement, no to poor visible porosity.

Shale: gray black, soft.

Core #4: 5961.2m (5cm)

Sandstone: gray, hard, quartz, appears to be very fine to fine grained, well cemented with calcareous cement, no to poor visible porosity.

Core #5: 5960.5m (4.75cm)

Shale and sandstone (coarse siltstone) (longitudinal contact) (fracture along shale)

Sandstone (coarse siltstone): gray, hard, quartz, appears to be very fine grained, well cemented with calcareous cement, no to poor visible porosity. (May grade to coarse siltstone)

Shale: gray black, soft.

Core #6: 5957.8m (4.5cm)

Interbedded shale & sandstone

Sandstone: gray, hard, quartz, appears to be very fine grained, well cemented with weakly calcareous cement, minor carbonaceous laminations, no to poor visible porosity.

Shale: gray black, soft, trace fine disseminated pyrite.

Core #7: 5940.0m (4.5cm)

Shale: gray, soft, non to slightly calcareous, fine disseminated pyrite.

Core #8: 5797.5m (5cm)

Shale: gray brown, soft, slightly calcareous, trace silt.

Core #9: Approximately 5961m (5cm) Core was taken on run #4, actual depth estimated.

<u>Sandstone</u>: gray, hard, very fine to fine grained, quartz, well cemented with calcareous and siliceous cement, calcareous matrix, no to poor visible porosity. (note: gas observed bubbling from core on recovery.)

Note: Grains size and other features such as rounding and sorting were hard to determine due to the rock flour residue left on the core from the coring procedure; in order to preserve the integrity of the core I did not attempt to remove it at the wellsite.

Appendix Q Wireline Logging Reports

Appendix Q Wireline Logging Reports

Wireline Logging Summary

Logging Suite Number:

Wireline Logging Company:

Schlumberger

Engineer:

G McIsaac/ F Monegarian/R

District:

Darthmouth

Unit Number:

Hole Size:

2052

Witness:

C.MacPherson/M Donovan

Was Pressure Control Equipment Utilized:

No No **Maximum Deviation:**

0.800° 431.8

Was the Logging Job Mechanically Assisted:

Total Lost Time:

0.00

Loggers' Total Down Time:

0.00

Total Job Time (From Rig up to Rig down):

36.75

True Vertical Depth Measured Depth

Casing Depth Driller Casing Depth Logger Total Depth Driller (Tally) 1,902.00 1,904.00 3,515.00

1,901.99 1,903.99 3,514.95

Total Depth Driller (Strap or SLM)

General Remarks:

Logging Run #:

Date:

Jun 12, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1222.0

Viscosity: 176

pH:

Fluid Loss:

Mud Resistivity (Rm):

@

Q

ō

Maximum Temperature:

69.0°

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf):

ō @ @

Source (Rmf):

Mud Cake Resistivity (Rmc):

@

Source (Rmc):

Logging Run Information

Date on Bottom:

Jun 12, 2002

Total Depth Logger:

3,520.70 (MD)

3,520.00 (TVD)

Logging Tools:

Remarks:

PEX-DIS-EMS

Logging Run #:

Date:

Jun 13, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1222.0

Viscosity: 176

pH:

Fluid Loss:

Mud Resistivity (Rm):

@

ō @

ō

Q

Maximum Temperature:

79.0 ⁰

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@ @ Source (Rmf): Source (Rmc):

Logging Run Information

Date on Bottom:

Total Depth Logger:

Jun 12, 2002

3,520.70 (MD)

3,520.70 (TVD)

Logging Tools:

CSAT-CSAT-CSAT-GR

Remarks:

Hole Conditions:

Logging Run #: Date:

Jun 13, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1222.0

Viscosity: 176

:Ha

Fluid Loss:

79.0°

Mud Resistivity (Rm):

@

ō Q

ō

Maximum Temperature:

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf):

@ @

Source (Rmf):

Mud Cake Resistivity (Rmc):

@

Source (Rmc):

Logging Run Information

Date on Bottom:

Jun 13, 2002

Total Depth Logger:

3,520.70 (MD)

3,520.70 (TVD)

Logging Tools:

MSCT, Rotary Sidewall Coring Tool. Cut 25 cores recovered 25 cores, 100% recovery.

Remarks:

Hole Conditions:

2052

Logging Suite Number:

Wireline Logging Company:

Schlumberger Darthmouth

Engineer: Unit Number: McIsaac/Knox/Toma/Wagner

District: Witness:

Donovan / Mac Dougall

No

Maximum Deviation:

8.900°

Was Pressure Control Equipment Utilized: Was the Logging Job Mechanically Assisted:

No

Hole Size:

311.0

0.00 **Total Lost Time:** Loggers' Total Down Time: 0.00 32.25

Total Job Time (From Rig up to Rig down):

Measured Depth

True Vertical Depth

Casing Depth Driller Casing Depth Logger Total Depth Driller (Tally) 3,402.00 3,503.00 4,418.00 3.401.95 3,502.95 4.416.46

Total Depth Driller (Strap or SLM)

General Remarks: Very good Logging Run.

Logging Run #: Date:

Jun 24, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1522.7

Viscosity: 187

pH:

Fluid Loss:

Mud Resistivity (Rm):

@

ō ō

Maximum Temperature:

95.0 º

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@ @

Q Source (Rmf): Source (Rmc):

Logging Run Information

Date on Bottom:

Jun 25, 2002

Total Depth Logger:

4.424.50 (MD)

(TVD)

Logging Tools:

AIT- DSI- LDT- CNL- NGS- EMS- M; 4424m - 3503m

Remarks:

Logging Run #:

Date:

Jun 25, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1522.7

Viscosity: 187

@

pH:

Fluid Loss:

Mud Resistivity (Rm):

Mud Resistivity (Rm) @ BHT:

@

Maximum Temperature:

104.0 º

Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@ o @

Source (Rmf): Source (Rmc):

Logging Run Information

Date on Bottom:

Jun 25, 2002

Total Depth Logger:

4,353.00 (MD)

(TVD)

Logging Tools:

MDT- GR; Attempt 12 tests 4353m - 4290m; no success

Remarks:

Hole Conditions: Very Good

Logging Run #:

Date:

Jun 25, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1522.7

Viscosity:

190

pH:

Fluid Loss:

108.0 º

Mud Resistivity (Rm):

@

ō

ō ō

Maximum Temperature:

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf): @

Source (Rmf):

Mud Cake Resistivity (Rmc):

@ Source (Rmc): @

Logging Run Information

Date on Bottom:

Jun 26, 2002

Total Depth Logger:

4,424.50 (MD)

(TVD)

Logging Tools:

OBMI-CIS-GR; 4424m - 3503m

Remarks:

Logging Run #:

4

Date:

Jun 27, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1522.7

Viscosity: 167

pH:

Fluid Loss:

Mud Resistivity (Rm):

@

© 5 © 5

ō

Maximum Temperature: Source (Rmf):

97.0 ⁰

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@ º

Source (Rmc):

Logging Run Information

Date on Bottom:

Jun 27, 2002

Total Depth Logger:

4,390.00 (MD)

(TVD)

Logging Tools:

CIS- MSCT- GR (Rotary sidewall coring tool)

Attempt 24 cores/ recover 24 cores/ 100%

Remarks:

Tool indicated low oil after core #24, did not attempt core #25

Logging Suite Number:

Wireline Logging Company:

Schlumberger

Engineer: Unit Number: G McIssac

2052

District: Witness:

M Donovan/C MacPherson

Was Pressure Control Equipment Utilized:

No

Maximum Deviation:

27.400°

Was the Logging Job Mechanically Assisted:

No

Hole Size:

216.0

Total Lost Time:

Loggers' Total Down Time:

Total Job Time (From Rig up to Rig down):

Measured Depth True Vertical Depth

4.404.00 **Casing Depth Driller** 4,402,69 Casing Depth Logger 4,405.00 4,403.68 **Total Depth Driller (Tally)** 5,425.00 5,343.61

Total Depth Driller (Strap or SLM)

General Remarks: The first logging descent was unable to reach the bottom of the well and therefore did

> not cross the bottom sandstone which was of the most interest. The OBMI and CMR were run in the shortened hole, in one descent, a clean out trip was necessary to get the other

logging tools to bottom.

Logging Run #:

Date:

Jul 16, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1785.0

Viscosity: 105

@

pH:

Fluid Loss:

144.0 º

Mud Resistivity (Rm):

Maximum Temperature:

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf):

ō @ @ ō

Source (Rmf):

Mud Cake Resistivity (Rmc):

@

ō

Source (Rmc):

Logging Run Information

Date on Bottom:

Jul 18, 2002

Total Depth Logger:

5,402.00 (MD)

5,321.00 (TVD)

Logging Tools:

OBMI-LDL-CNL-GR-HNGS

Remarks:

Could not get all the way to bottom, rubber stand-offs on tool were effected by mud and or

gas in mud and were greatly expanded when tool recovered at surface.

Hole Conditions: Very good down to bridge at 5402.

Logging Run #:

Date:

Jul 16, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1785.0

Viscosity: 105

pH:

Fluid Loss:

Mud Resistivity (Rm):

Mud Resistivity (Rm) @ BHT:

@ @ Q

Maximum Temperature:

144.0 º

Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@ ō @

Source (Rmf): Source (Rmc):

Logging Run Information

Date on Bottom:

Jul 18, 2002

Total Depth Logger:

5,381.00 (MD)

5,301.00 (TVD)

Logging Tools:

CMR-GR

Remarks:

Could not get all the way to bottom, rubber stand-offs on tool were effected by mud and or

gas in mud and were greatly expanded when tool recovered at surface.

Hole Conditions:

Logging Run #:

Date:

Jul 23, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1785.0

Viscosity:

104

pH:

Fluid Loss:

144.0 º

Mud Resistivity (Rm):

@

@

ō

Q @

Maximum Temperature:

@ ō Source (Rmf): Source (Rmc):

Logging Run Information

Mud Resistivity (Rm) @ BHT:

Mud Filtrate Resistivity (Rmf):

Mud Cake Resistivity (Rmc):

Date on Bottom:

Jul 24, 2002

Total Depth Logger:

5,426.00 (MD)

5,343.00 (TVD)

Logging Tools:

CNL-LDT-GR Logged from 5424.5 to 5325 meters. Clean out trip was required before this descent.

Hole Conditions:

Remarks:

Logging Run #:

4

Date:

Jul 23, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril

Fluid Density:

1785.0

Viscosity: 104

pH:

Fluid Loss:

Mud Resistivity (Rm):

@ @ <u>o</u> o

Maximum Temperature:

148.0 ⁰

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@

Source (Rmf):

@ Source (Rmc):

Logging Run Information

Date on Bottom:

Jul 23, 2002

Total Depth Logger:

5,425.70 (MD)

5,343.00 (TVD)

Logging Tools:

MSCT Cut 25 cores and recovered 22 cores.

Remarks:

The coring motor would not start on the first tool ran, and it was pulled for a second tool, on testing at 1700 meters the coring motor would not start either, tool pulled and adjusted, it then

worked on test as it was run in the hole.

Hole Conditions:

Logging Suite Number:

Wireline Logging Company:

Schlumberger

B. Mitchell/G.MacIsaac/B. M

District:

Dartmouth

Engineer: Unit Number:

Hole Size:

2052

Witness:

B. Mac Dougall

Was Pressure Control Equipment Utilized: Was the Logging Job Mechanically Assisted: No No Maximum Deviation:

165.1

Total Lost Time:

Loggers' Total Down Time:

Total Job Time (From Rig up to Rig down):

44.00

Measured Depth True Vertical Depth

Casing Depth Driller Casing Depth Logger

Total Depth Driller (Tally)

Total Depth Driller (Strap or SLM)

5,403.00 5,405.00 6,070.00

5,322.57 5,324.49

5,982.41

General Remarks:

Logging Run #:

Date:

Aug 9, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril IA

Fluid Density:

Viscosity:

pH:

Fluid Loss:

Mud Resistivity (Rm):

@

Mud Resistivity (Rm) @ BHT:

@

ō ō

Maximum Temperature:

170.0°

Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@ ō @

Source (Rmf): Source (Rmc):

Logging Run Information

Date on Bottom:

Aug 10, 2002

Total Depth Logger:

6,077.00 (MD)

(TVD)

Logging Tools: Remarks:

GR/DSI/AIT Good Run

Hole Conditions: Very Good

Logging Run #:

Date:

Aug 10, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril IA

Fluid Density:

Viscosity:

pH:

Fluid Loss:

Mud Resistivity (Rm):

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf):

ō @ @

Maximum Temperature:

171.0°

Mud Cake Resistivity (Rmc):

@ Q Source (Rmf): Source (Rmc):

Logging Run Information

Date on Bottom:

Total Depth Logger:

Aug 10, 2002

6,077.00 (MD)

(TVD)

Logging Tools:

GR/CNL/LDT

Remarks:

Good Run, logged with pad in.

Hole Conditions: Good, some sticking at shoe and on bottom.

Logging Run #:

Date:

Aug 10, 2002

Drilling Fluid Data

Drilling Fluid Type:

Fluid Density:

Viscosity:

pH:

Fluid Loss:

Mud Resistivity (Rm):

@ @

Maximum Temperature:

Mud Resistivity (Rm) @ BHT: Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@

@

ō

Source (Rmf): Source (Rmc):

Logging Run Information

Date on Bottom:

Total Depth Logger:

(MD)

(TVD)

Logging Tools:

MCST

Remarks:

Tool Failure, bit would not rotate.

Hole Conditions:

Logging Run #:

Date:

Aug 10, 2002

Drilling Fluid Data

Drilling Fluid Type:

Fluid Density: Viscosity: pH: Fluid Loss:

Mud Resistivity (Rm): @ 2

Mud Resistivity (Rm) @ BHT: @ Maximum Temperature:

Logging Run Information

Date on Bottom:

Total Depth Logger: (MD) (TVD)

Logging Tools: MCS

Remarks: Tool failure, coring head would not rotate to coring position

Hole Conditions:

Logging Run #: 5

Date: Aug 11, 2002

Drilling Fluid Data

Drilling Fluid Type: Paradril IA

Fluid Density: Viscosity: pH: Fluid Loss:

Mud Resistivity (Rm): @ 9

Mud Resistivity (Rm) @ BHT: @ Maximum Temperature:

Logging Run Information

Date on Bottom: Aug 11, 2002

Total Depth Logger: (MD) (TVD)

Logging Tools: MCST

Remarks: Gamma ray failure, cut one core on depth.

Hole Conditions: Good

Logging Run #:

Date: Aug 11, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril IA

Fluid Density:

Viscosity:

pH:

Fluid Loss:

Mud Resistivity (Rm):

@

@

Mud Resistivity (Rm) @ BHT: **Mud Filtrate Resistivity (Rmf):**

ō @ ō

Maximum Temperature:

Source (Rmf):

Mud Cake Resistivity (Rmc):

@ Source (Rmc):

Logging Run Information

Date on Bottom:

Aug 11, 2002

Total Depth Logger:

(MD)

(TVD)

Logging Tools:

MCST

Remarks:

Cut 8 core, gamma ray failure.

Hole Conditions: Good

Logging Run #:

Date:

Aug 11, 2002

Drilling Fluid Data

Drilling Fluid Type:

Paradril IA

Fluid Density:

Viscosity:

pH:

Fluid Loss:

172.0°

Mud Resistivity (Rm):

@ ō

Mud Resistivity (Rm) @ BHT:

ō ō

ō

Maximum Temperature: Source (Rmf):

Mud Filtrate Resistivity (Rmf): Mud Cake Resistivity (Rmc):

@

@

@

Source (Rmc):

Logging Run Information

Date on Bottom:

Aug 11, 2002

Total Depth Logger:

(MD)

(TVD)

Logging Tools:

MCST

Remarks:

Gamma ray and telemetry head failure after reaching coring point.

Hole Conditions: Good

Appendix R Wireline Formation Pressure Reports

Appendix R Wireline Formation Pressure Tests

Wireline Formation Test Pressure Survey

Well:

Chevron et al Newburn H-23

Hole Size:

317.5mm (12 1/4")

Date:

25-June-2002

Tool:

MRPS_1

Probe Type:

Large Diameter Probe

Gauge:

BQP1

Gauge Resolution: 0.010 psi

Test	File	Depth m	TVD m	Drawdown Mobility MD/CP	Mud P	ressure	Last read build-up Pressure KPAA	Formation Pressure KPAA	Test Type
					Before KPAA	After KPAA			
1	77	4317.54	4316.99		65867.20	65880.70			Lost Seal
2	78	4313.00	4312.48		65817.12	65841.20			Lost Seal
3	79	4312.00	4311.49		65810.12	65812.00			Lost Seal
4	80	4290.02	4289.61		65459.62	65470.61			Dry Test
5	81	4319.02	4318.47		65930.84	65904.23			Lost Seal
6	82	4319.99	4319.43		65908.88	65904.34			Lost Seal
7	85	4353.37	4352.60		66343.16	66353.75			Lost Seal
8	86	4352.53	4351.76		66349.11	66356.61			Lost Seal
9	87	4351.51	4350.75		66348.30	66355.67			Lost Seal
10	88	4326.97	4326.36		65954.29	65967.67			Lost Seal
11	89	4321.46	4320.89		65885.56	65896.14			Lost Seal
12	90	4335.29	4334.64		66122.86	66120.38			Lost Seal

Appendix S Sidewall Core Routine Care Analysis

Appendix S Sidewall Core - Routine Core Analysis

LABORATORIES CORE

: CHEVRON CANADA RESOURCES : CHEVRON ET AL NEWBURN H-23

Company Well

Location : Province :

File No.: 52131-02-0278
Date : 2002-07-05
Analysts: DJB
Core Dia:

Field: MAHONE
Formation: Coring Equip.: ROTARY SIDEWALL
Coring Fluid:

S ш ~ ANALYSIS C.ORE

S

	S	· · s	s vf f lam shy	s vf f m carb	s vf f m lam	s vf	s i glauc p	s vf f	s vf f cal	s vf f cal	svffs			ss vf f carb pyr						SAMPL			
	69	71	62	99	63	99	80	65	99	99	99			2670.									
N NUMBER 1	.11	. 10	. 17	. 18	. 16	. 08	. 13	.09	. 12	. 12	. 12	N NUMBER 2		0.094									
RU	0.	0.	4.	•	9.	0.		٣.	4.	2	ω.	RU		0.09									
	07.8	12.8	13.5	17.5	18.5	19.8	23.0	25.5	49.7	53.5	54.5		780.4	913.8	960.0	063.0	100.8	129.0	133.8	144.3	186.5	189.0	195.3
	P 1	P 1	P 1	ھ	P 1	P1	P 1	p 1	P 1	هـ	P 1		P 2	P 2	p 2	p 2	P 2	P 1	P 1	P I	P 1	P 1	Ь
	RUN NUMBER	RUN NUMBER 1 P 18 4307.80 <.01 0.116 2690. ss vf f lam si	RUN NUMBER 1 P 18 4307.80 <.01 0.116 2690. ss vf f lam si P 17 4312.80 0.01 0.101 2710. ls i	P 18 4307.80 <.01 0.116 2690. ss vf f lam sid P 17 4312.80 0.01 0.101 2710. 1s i P 16 4313.50 0.40 0.175 2620. ss vf f lam shy	P 18 4307.80 <.01 0.116 2690. ss vf f lam sid P 17 4312.80 0.01 0.101 2710. 1s i P 16 4313.50 0.40 0.175 2620. ss vf f lam shy P 6 4317.50 42.4 0.181 2660. ss vf f m carb	P 18 4307.80 <.01 0.116 2690. ss vf f lam si P 17 4312.80 0.01 0.101 2710. 1s i P 16 4313.50 0.40 0.175 2620. ss vf f lam sh P 6 4317.50 42.4 0.181 2660. ss vf f m carb P 15 4318.50 2.65 0.165 2630. ss vf f m lam	P 18 4307.80 <.01 0.116 2690. ss vf f lam sid P 17 4312.80 0.01 0.101 2710. ls i P 16 4313.50 0.40 0.175 2620. ss vf f lam shy P 6 4317.50 42.4 0.181 2660. ss vf f m carb P 15 4318.50 2.65 0.165 2660. ss vf f m lam P 14 4319.80 0.06 0.089 2660. ss vf f	P 18 4307.80 <.01	P 18 4307.80 <.01	P 18 4307.80 <.01	P 18 4307.80 <.01	P 18 4307.80 < .01	P 18 4307.80 < .01	P 18 4307.80 <.01 0.116 2690. ss vf f lam sid 0.101 2710. ls i 1 lam shy 17 4312.80 0.40 0.101 2710. ls i 1 lam shy 18 4317.50 0.40 0.175 2620. ss vf f lam shy 2 6 4317.50 42.4 0.181 2660. ss vf f m carb pyr 15 4318.50 0.06 0.089 2660. ss vf f m lam 0.08 2660. ss vf f m lam 0.18 0.181 2800. ls iglauc pyr 12 4325.50 0.31 0.093 2650. ss vf f calc 0.42 0.124 2660. ss vf f calc 0.28 0.121 2660. ss vf f calc 0.28 0.121 2660. ss vf f calc 0.28 0.129 2660. ss vf f shy lam cal 0.80 0.129 2660. ss vf f shy lam cal	P 18 4307.80 < .01	P 18 4307.80 < .01	P 18 4307.80 <.01 0.116 2690. ss vf f lam sid 0.10 4313.50 0.00 0.101 2710. ls i 1 lam sid 0.40 0.175 2620. ss vf f lam shy 6 4317.50 42.4 0.181 2660. ss vf f m carb pyr 15 4318.50 0.06 0.089 2660. ss vf f m lam carb pyr 13 4323.00 0.18 0.131 2800. ls i glauc pyr 12 4325.50 0.31 0.093 2650. ss vf f m lam 0.131 2800. ls i glauc pyr 0.12 4325.50 0.31 0.093 2650. ss vf f calc 0.28 0.124 2660. ss vf f calc 0.28 0.129 2660. ss vf f calc 0.28 0.129 2660. ss vf f calc 0.28 0.129 2660. ss vf f shy lam cal 0.29 4913.80 0.09 0.094 2670. ss vf f carb pyr 25 4960.00	P 18 4307.80 <.01	RUN NUMBER 1 P 18 4307.80 <-01 0.116 2690. ss vf f lam sid 4312.80 0.00 0.101 2710. ls i 4313.50 0.40 0.175 2620. ss vf f lam shy 6 4317.50 42.4 0.181 2660. ss vf f m carb pyr 15 4318.50 0.06 0.089 2660. ss vf f m lam 714 4319.80 0.06 0.089 2660. ss vf f m lam 8 4323.00 0.18 0.131 2800. ls i glauc pyr 11 4349.70 0.42 0.124 2660. ss vf f 8 4353.50 0.28 0.124 2660. ss vf f calc 9 10 4354.50 0.28 0.129 2660. ss vf f calc 9 10 4354.50 0.09 0.094 2660. ss vf f shy lam cal 18 23 4780.40 0.09 0.094 2670. ss vf f carb pyr 19 25 4960.00 19 22 5100.80 19 5129.00	RUN NUMBER 1 P 18 4307.80 <.01 0.116 2690. ss vf f lam sid P 17 4312.80 0.01 0.101 2710. ls i P 16 4313.50 0.040 0.175 2620. ss vf f lam shy E 4317.50 42.4 0.181 2660. ss vf f m carb pyr 15 4318.50 2.65 0.165 2630. ss vf f m lam P 13 4323.00 0.18 0.131 2860. ss vf f m lam P 13 4325.50 0.18 0.131 2860. ss vf f P 11 4349.70 0.42 0.124 2660. ss vf f calc P 11 4349.70 0.28 0.124 2660. ss vf f calc P 12 4353.50 0.28 0.121 2660. ss vf f calc P 14 4913.80 0.09 0.094 2670. ss vf f carb pyr P 23 4780.40 0.09 0.094 2670. ss vf f carb pyr P 24 4913.80 0.09 0.094 2670. ss vf f carb pyr P 25 5100.80 P 19 5129.00	RUN NUMBER I P 18 4307.80	RUN NUMBER 1 P 18 4307.80	RUN NUMBER 1 P 18 4307.80

Appendix S Sidewall Core - Routine Core Analysis

CORE LABORATORIES

Company : CHEVRON CANADA RESOURCES
Well : CHEVRON ET AL NEWBURN H-23

Field : Formation :

: MAHONE

File No.: 52131-02-0278 Date : 2002-07-05

Formation :

S

RESU

S

S

ALY

N N

C 0 R E

) DENSITY NO SA 1 2680. SS vf 2 2670. SS vf 3 2670. SS vf 3 2670. SS vf 3 2680. SS vf 3 2680. SS vf 3 2680. SS vf 3 2680. SS vf 3 2680. SS vf 2670. SS vf 2670. SS vf 2670. SS vf 2670. SS vf 2670. SS vf 2670. SS vf 2650. SS vf					
SAMPLE DEPTH PERMEABILITY POROSITY DEN	_	> >	>> >>	ರ	ಥ
SAMPLE DEPTH PERMEABILITY POROSITY DEN	TION	~ << v × × × × × × × × × × × × × × × × ×	מ מ	>	>
SAMPLE DEPTH PERMEABILITY POROSITY DENSITY DENSITY NUMBER 3 5198.50 7 5198.50 8 5203.80 9 2 5213.50 9 13 5368.00 13 5368.00 13 5407.50 9 10 5407.00 10 5407.00 11 5408.50 9 5407.50 12 5960.50 13 5960.50 14 5961.20 15 0.03 16 0.08 17 2670. \$\$ vf no SAM		ГЕ ФО ФО ФО ФО ФО ФО ФО ФО ФО ФО ФО ФО ФО	sh sh yq	s Py	sh
SAMPLE NUMBER DEPTH PERMEABILITY POROSITY RELIUM) DENSITY RAINUM Traction Kg/m3 Major fra	10	A T T T T A A A A A	4444	4-4-	4
SAMPLE NUMBER DEPTH PERMEABILITY POROSITY (HELIUM) DENSITY RALIUM)		N N N N N N N N N N N N N N N N N N N	8 8 8 8 8 8 8 8	s s s	SS
SAMPLE DEPTH PERMEABILITY POROSITY RALIUM) P 5 5198.50 P 4 5203.80 P 2 5213.50 P 13 5208.50 P 12 5403.60 P 10 5407.00 P 10 5407.00 P 2 5408.50 P 10 5407.00 P 2 5408.50 P 2 5213.50 P 3 5408.50 P 3 5408.50 P 6 5957.80 P 6 5957.80 P 7 5422.50 P 7 5422.50 P 8 5960.50 P 7 5422.50 P 8 5960.50 P 8 5960.50 P 9 5961.20 P 9 5961.20 P 9 5961.20 P 1790.002 P 1790.002 P 1890.117	GRAIN ENSIT kq/m3	670 680 680 670 670	720 670 680 680	670 670	65
SAMPLE DEPTH PERMEABILIT MAXIMUM) (M	OROSIT HELIUM ractio	0.072 0.091 0.170 0.189 0.179	.13	. 12	. 10
SAMPLE DEPTH NUMBER P	ERMEABILI (MAXIMUM) Kair mo	 < .01 0 .04 0 .15 5 .73 6 .43 	0000	0.0	0.
NS CA A A A A A A A A A A A A A A A A A A	EPT	198.5 208.5 208.5 213.5 408.6 407.0 408.5 422.5	957.8 960.5 961.0	961.7	962.8
	88 89 191		ი	· w ~	_

⋖	Ħ	(Prefix A) Horizontal matrix permeability	•=	u	Intercrystalline	Hdv	Himidity analysis of small alite
		measured by presents down profile	- 1			: 5	
		measured by pressure decay prome		ı	inclusions		at 60 degrees Celsius and 50 percent
		permeametry through a probe tip due	lam	,H	Laminae (laminated)		relative humidity
		to induced fractures	s	11	Limestone	SP	= Small plug (sample drilled from core in
ACA	u	Removed for advanced core analysis	<u>></u>	11	Large vug		maximim horizontal direction and
anhy	11	Anhydrite	: Ε	11	Medium		natallel to bodding plane where
ard	Ħ	Araillaceous	: T	t	Man Income		parametric bedoning plane where
AST	Ħ	Appeare elmilar to	= i	1	mud IIIyaded		possible) permeability, porosity and
2 :	. 1	Appeals similar to	E	11	Medium vug		grain density are measured
ĭ	II	Bitumen	Y Z	11	Not analyzed by request	53	= Sandstone
쏡	II	Break	N	II	No permeability measurement possible	ssdy	= Slightly sandy (≤20%)
v	11	Coarse			due to poor sample quality	sshv	= Slightly shaly (<20%)
calc	11	Calcite (calcareous)	N	u	Not received	. As	= Stylolite (ic)
carb	Ħ	Carbonaceous	8	11	Oolitic	and f	Sulphir
cbl	Ħ	Cobble	C	11	Overhittden sample (nermeability and		
cal	11	Conglomerate)		notosity measured at not overhirden	TEC	Thermal Extraction Chaomatograph: 10
cht	n	Chert			stress))	defermine oil richness
coal	Ħ	Coal/coal inclusion	ad	tt	Proserved for future etudies	Ţ	This souther
000	Ħ	Coquina	: 4	ti	Dobble	2 1	
lob	11	Dolomite	מנו מנו		Proliminary Cull Diamoter semale		
į	u	Elas		1		<u>ပ</u> ွဲ .	- very coarse
	1		לא ל))	Preliminary Small Plug sample	vfrac	= Vertical fracture
.	H	Full diameter analysis including three	PSA	11	Particle size analysis	>	= Very fine
		directional permeabilities, porosity and	bpv	u	Pinpoint vug	VIS	= Viscosity of oil measured
		densities	pyr	11	Pyrite (pyritic)	V0B	Vertical overburden sample (vertical
loss	11	Fossil (fossiliferous)	pyrbit	11	Pyrobitumen		permeability measured at net
frac	Ħ	Fracture (undifferentiated)	2	11	Rubble		overburden stress)
Ξ	u	Friable	SA	n	Sieve analysis	vshy	= Verv shalv (>40%)
glanc	Ħ	Glauconite (glauconitic)	sdy	u	Sandy	VSP	= Vertical small plug drilled from whole
grnl	11	Granule	SEM	II.	Scanning electron microscope analysis		core to measure vertical permeability
gyp	u	Gypsum	sh	u	Shale		and occasionally porosity
hfrac	11	Horizontal fracture	shy	11	Moderately shaly (20% - 40%)	bna	■ Vuggy (vuggular)
hal	11	Halite (sait)	sid	II	Siderite	WS	= Water sand
FD		Inner Full Diameter, (a Full diameter	slist	n	Siltstone	XRD	= X-ray diffraction
		sample is drilled from the bulk portion	slty	11	Silty	•	≈ Perm unavailable due to broken core
		of the core in the vertical direction for	SPT	u	Small Plug used for tracer analysis	10240	= Permeability > 10 Darcies, (maximum
		permeability and porosity measurements)					rouffing permeability manageranan

Appendix T Sidewall X-ray Diffraction Analysis

Appendix T Sidewall Core – X-Ray Diffraction Analysis

X-Ray Diffraction Results 12 1/4" Hole Section - Sands

X-Ray Diffraction Analysis (Combined Whole Rock and Clay)

Company:

Chevron Texaco

Well:

Chevron et al Newburn H-23

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Sample ID	6	8	10	11	12	13
Depth	4317.5	4353.5	4354.5	4349.7	4325.5	4323
		Whole	Rock We	ght %		
Quartz	65	52	63	64	38	52
Plagioclase	23	22	21	16	17	12
K-Feldspar	0	0	0	0	2	1
Calcite	1	18	4	9	1	17
Dolomite	Trace	Trace	0	0	Trace	Trace
Siderite	1	Trace	1	1	3	7
Pyrite	1	0	1	1	3	3
Total Clay	9	8	10	9	36	8
		Ru	lative Clay	% <u> </u>		
Smectite	Trace	Trace	Trace	1	0	1
Illite / Smectite *	11	11	17	9	14	17
IIIIte & Mica	22	19	21	17	32	30
Kaolinite	47	50	46	51	36	37
Chlorite	20	20	16	22	18	15

^{*} Illite / Smectite Mixed-Layer Clay

100	100	100	100	100	100
100	100	100	100	100	100

X-Ray Diffraction Results 12 1/4" Hole Section – Sands (continued)

X-Ray Diffraction Analysis (Combined Whole Rock and Clay)

Company:

Chevron Texaco

Well:

Chevron et al Newburn H-23

Sample ID	14	15	16	17	18
Depth	4319.8	4318.5	4313,5	4312.8	4307.8
		Whal	e Rock Wei	ght %	
Quartz	64	62	50	46	40
Plagioclase	10	19	28	22	8
K-Feldspar	3	1	1	1	1
Calcite	15	1	Trace	21	0
Dolomite	0	0	0	0	0
Siderite	1	3	3	1	13
Pyrite	0	0	1	2	0
Total Clay	7	14	17	7	38
		R	elative Clay	%	
Smectite	1	2	1	0	0
Illite / Smectite *	11	12	15	12	17
Illite & Mica	19	21	32	34	37
Kaolinite.	48	48	38	36	32
Chlorite	21	17	14	18	14

^{*} Illite / Smectite Mixed-Layer Clay

100	100	100	100	100
100	100	100	100	100

X-Ray Diffraction Results 8 ½" Hole Section - Sands

X-Ray Diffraction Analysis (Combined Whole Rock and Clay)

Company: CHEVRON Well: Chevron el

CHEVRON Chevron et al Newburn H-23

Depth. 5208.5 5213.5 5403.6 5406.5 5407 5407.5 5408 Quartz 36 44 61 70 59 84 77 Plagioclase 16 13 12 12 12 6 9 K-Feldspar 1 Trace 0 0 0 0 0 0 Calcitis 15 20 2 1 Trace 1 7 2 Octomité 0 0 0 0 0 0 0 1 Pyrite 3 4 1 1 2 0 1 Pyrite 3 4 1 1 2 0 1 Total Clay 28 18 24 16 24 9 11 Smecktie 1 1 2 1 13 2 2 Smecktie 1 1 0 0 0 0	Sample 1D	ຕ	2	12	11	10	6	80
Whole Reak Weight % 36 44 61 70 59 84 16 13 12 12 12 6 1 Trace 0 0 0 0 15 20 2 1 Trace 1 1 0 0 0 0 0 0 1 1 Trace 3 0 0 28 18 24 16 24 9 1 1 0 0 0 0 1 1 1 2 0 0 4 13 2 1 13 2 44 29 5 5 29 8 20 3 40 29 44 20 3 5 54 9 44 29 5 54 9 44 29 5 54 6 20 3 5 54 6 40 6 <	Depth	5208.5	5213.5	5403.6	5406.5	5407	5407.5	5408.5
36 44 61 70 59 84 16 13 12 12 6 1 Trace 0 0 0 0 15 20 2 1 Trace 1 0 0 0 0 0 0 0 1 1 Trace Trace 3 0 0 28 18 24 16 24 9 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 44 29 5 5 29 84 2 20 32 40 29 44 2 44 2 44 2 4				Whole	Rock We	ight %		:
16 13 12 12 6 1 Trace 0 0 0 0 15 20 2 1 Trace 1 0 0 0 0 0 1 1 Trace 3 0 3 4 1 1 2 0 28 18 24 16 24 9 1 1 0 0 0 1 1 0 0 0 4 13 2 1 13 2 44 29 5 5 29 8 20 32 54 29 44	Quartz	36	44	61	02	59	84	77
1 Trace 0 0 0 0 15 20 2 1 Trace 1 0 0 0 0 0 0 3 4 1 1 2 0 28 18 24 16 24 9 1 1 0 0 0 1 1 0 0 0 44 29 5 5 29 84 20 32 54 29 44 9	Plagioclase	16	13	12	12	12	မ	တ
15 20 2 1 Trace 1 Trace 1 1 0 <th< th=""><th>K-Feldspar</th><th>1</th><th>Trace</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th></th<>	K-Feldspar	1	Trace	0	0	0	0	0
0 0 0 0 0 1 1 Trace 3 0 3 4 1 1 2 0 28 18 24 16 24 9 1 1 0 0 0 0 1 1 0 0 0 0 14 13 2 1 13 2 44 29 5 5 29 8 21 25 38 40 29 44 20 32 55 54 29 46	Calcita	15	20	2	1	Trace	1	2
1 1 Trace Trace 3 0 3 4 1 1 2 0 28 18 24 16 24 9 1 1 0 0 0 0 14 13 2 1 13 2 44 29 5 5 29 8 21 25 38 40 29 44 20 32 55 54 29 46	Dolornite	0	0	0	0	0	0	0
3 4 1 1 2 0 28 18 24 16 24 9 1 1 Relative Clay % 6 0 1 1 0 0 0 0 14 13 2 1 13 2 4 44 29 5 5 29 8 2 20 32 55 54 29 46 4	Siderite	1	1	Trace	Trace	က	0	Trace
28 18 24 16 24 9 1 Relative Clay % 9 9 1 1 0 0 0 14 13 2 1 13 2 44 29 5 5 29 8 21 25 38 40 29 44 20 32 55 54 29 46	Pyrite	3	4	1	1	2	0	-
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Clay	28	18	24	16	24	6	11
1 1 0 0 0 0 14 13 2 1 13 2 44 29 5 5 29 8 21 25 38 40 29 44 20 32 55 54 29 46				Re	afive Clay	%,		
14 13 2 1 13 2 44 29 5 5 29 8 21 25 38 40 29 44 20 32 55 54 29 46	Smectite	1	1	0	0	0	0	0
44 29 5 5 29 8 21 25 38 40 29 44 20 32 55 54 29 46	Illite / Smectite *	14	13	2	1	13	2	2
21 25 38 40 29 44 20 32 55 54 29 46	Illite & Mica	44	29	2	5	59	8	9
20 32 55 54 29 46	Kaolinite	21	25	38	40	29	44	36
	Chlorite	20	32	55	54	29	46	56

* Illite / Smectite Mixed-Layer Clay

9	100	100	1 00	100	100	100
100	100	100	100	100	100	100

160 160

5 5 5

X-Ray Diffraction Analysis (Combined Whole Rock and Clay)

CHEVRON Company: Well:

	ewburn H-23
25	n et af Newburn
	Chevron
•	•

	**	25	24	. 22	6	6	16	15	o	20	4
Depth	4913.8	4960	5063	5100.8	5129	5133,8	5186.5	5189	5185.3	5/98.5	5203.8
					Whole	Rock Weight %	ight %				
Quartz	55	32	39	39	27	30	32	29	37	31	40
Plagioclass	10	4	4	8	3	3	2	9	12	7	6
K-Feldsper	2	Trace	Trace	2	1	0	1	1	1	-	-
Calcite	1	31	24	9	40	36	52	34	13	31	6
Dolomite	0	0	0	0	0	0	0	0	0	1	0
Siderite	2	9	2	Trace	1	٦	1	-	2	-	2
Pyrite	1	2	3	2	2	2	3	2	3	Ψ-	2
Total Clay	29	56	28	43	26	28	30	27	32	27	37
					Rel	ative Clay	. % /				
Smectife	-	1	1	1	2	2	1	-	1	1	1
IIIte / Smectite	13	10	6	11	11	13	11	10	14	17	15
jijte & Mica	32	39	25	32	36	22	32	30	31	37	32
Kaolinite	35	32	41	35	30	40	33	34	33	27	32
Chlorite	19	18	24	21	21	18	23	25	21	18	20

* Illite / Smectite Mixed-Layer Clay

100	100
100	100
100	100
100	100
100	100
100	100
100	100
100	100
100	100

X-Ray Diffraction Results 6 ½" Hole Section – Sands

X-Ray Diffraction Analysis (Combined Whole Rock and Clay)

Company: Well:

Chevron

Chevron et al. Newburn H-23

Sample ID	1	2	3	. 4	5	6	9
Depth	5952.8	5962	5961.7	5961.2	5960.5	5957.8	5961
		Whole	Rock We	ight %	. L . L		
Quartz	60	78	62	67	57	54	74
Plagioclase	14	6	12	10	15	13	10
K-Feldspar	1	1	2	1	1	2	0
Calcite	0	1	0	0	0	Trace	1
Dolomite	0	0	Trace	0	0	0	0
Siderite	1	0	Trace	0	1	5	Trace
Pyrite	0	0	0	0	1	2	0
Total Clay	24	14	24	22	25	24	15
		Re	lative Clay	c%:			
Smectite	0	0	0	0	0	0	0
Illite / Smectite *	11	10	10	9	11	14	5
Illite & Mica	19	20	21	18	25	34	14
Kaolinite	29	20	20	18	16	19	18
Chlorite	41	50	49	55	48	33	63

^{*} Illite / Smectite Mixed-Layer Clay

100	100	100	100	100	100	100
100	100	100	100	100	100	100

X-Ray Diffraction Results All hole sections - Shales

X-Ray Diffraction Analysis (Combined Whole Rock and Clay)

Company:

Chevron

Well:

Chevron et al. Newburn H-23

Sample ID	10	8	7	6	5	24	22
Depth	2903.5	3139	3236	3373	3481	3701	3808.9
Ži.			Whol	e Rock Wei	ght%		
Quartz	41	44	56	46	42	41	44
Plagioclase	3	3	1	10	5	5	4
K-Feldspar	3	2	2	1	3	4	2
Calcite	16	11	3	3	5	3	1
Dolomite	0	0	0	0	0	0	0
Siderite	1	4	4	1	4	2	2
Pyrite	5	3	2	2	3	2	2
Total Clay	31	33	32	37	38	43	45
			R	elative Clay	%.		
Smectite	0	0	0	0	0	0	0
Illite / Smectite *	10	7	7	6	7	9	7
llite & Mica	27	24	21	17	26	25	27
Kaolinite	42	40	44	48	42	41	43
Chlorife	21	29	28	29	25	25	23

^{*} Illite / Smectite Mixed-Layer Clay

100	100	100	100	100	100	100
100	100	100	100	100	100	100

X-Ray Diffraction Results All hole sections – Shales (Continued)

X-Ray Diffraction Analysis (Combined Whole Rock and Clay)

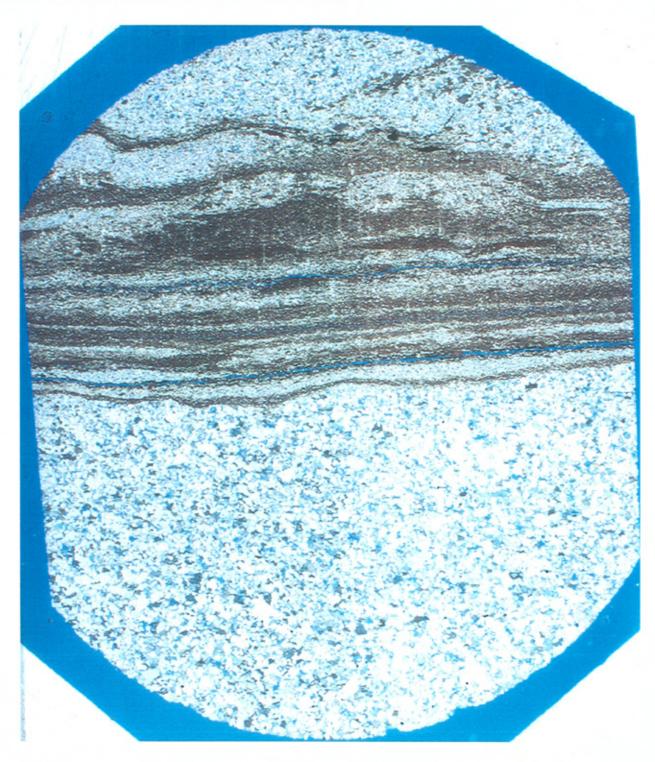
Company:

Chevron

Well:

Chevron et al. Newburn H-23

Sample ID	5A	3 .	2 ·	- 23	20	14.
Depth	3989	4112.8	4233.4	4780.4	5098	5315.8
		Whol	e Rock Wei	ght %		
Quartz	39	37	47	51	38	36
Plagioclase	5	6	9	7	8	12
K-Feldspar	3	1	2	2	4	0
Calcite	1	3	1	1	3	23
Dolomite	0	0	0	0	0	3
Siderite	4	1	10	3	2	1
Pyrite	1	8	2	1	0	4
Total Clay	47	44	29	35	45	21
		Re	elative Clay	%		
Smectite	0	0	0	0	0	0
Illite / Smectite *	9	12	17	15	6	20
Illite & Mica	34	47	49	37	32	43
Kaolinite	42	23	22	28	41	22
Chlorite	15	18	12	21	21	15

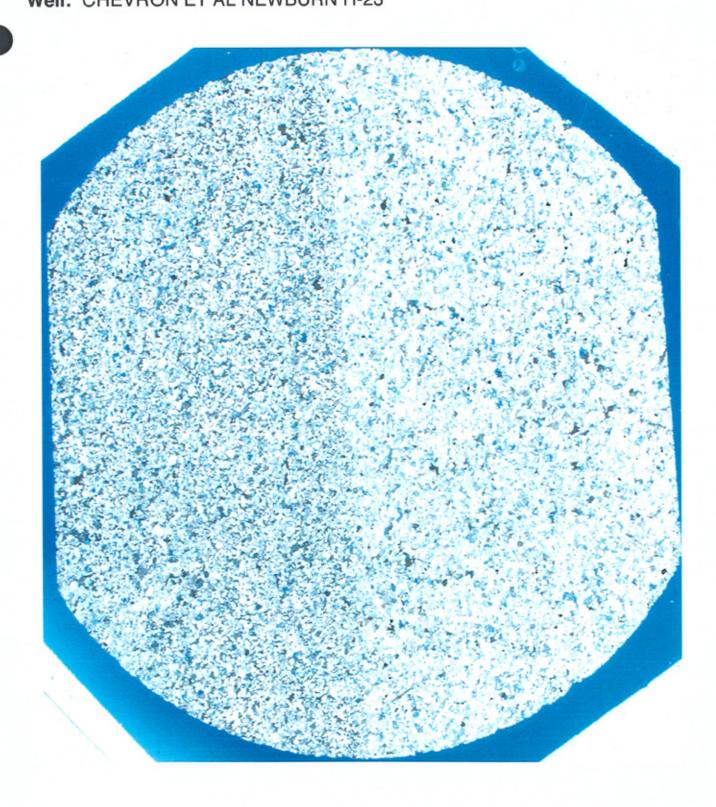

^{*} Illite / Smectite Mixed-Layer Clay

100	100	100	100	100	100
100	100	100	101	100	100

Appendix U Sidewall Core Photographs

Appendix U Sidewall Core Photographs

Well: CHEVRON ET AL NEWBURN H-23



Sample: Depth (m): SP 10 4354.50

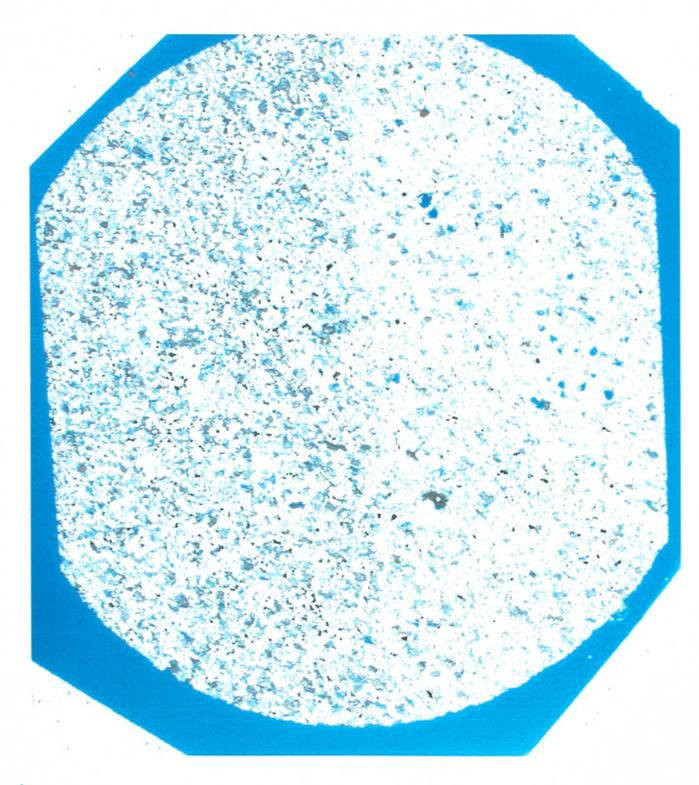
Company: CHEVRON CANADA RESOURCES Well: CHEVRON ET AL NEWBURN H-23



Sample: Depth (m):

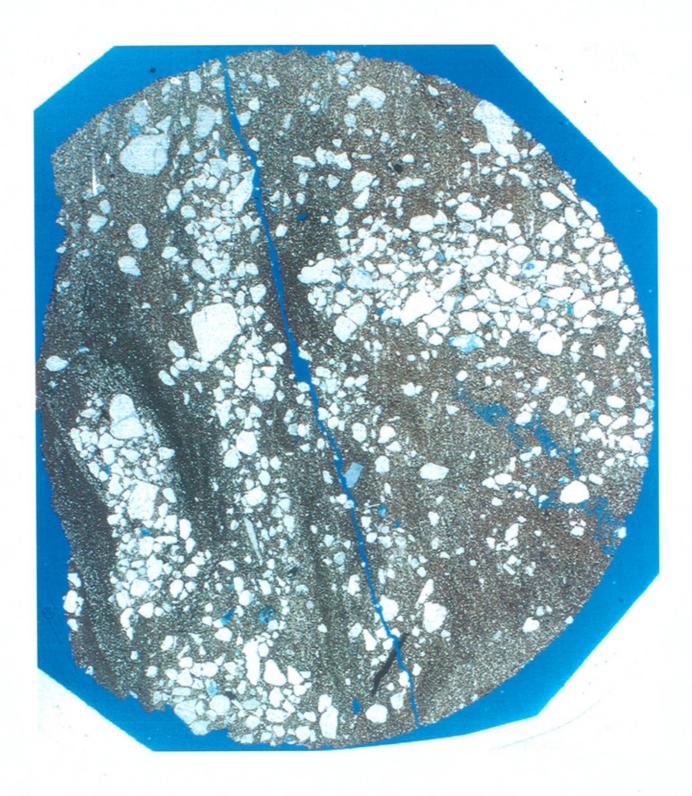
SP 8 4353.50

Well: CHEVRON ET AL NEWBURN H-23



Sample: Depth (m):

SP 6 4317.50

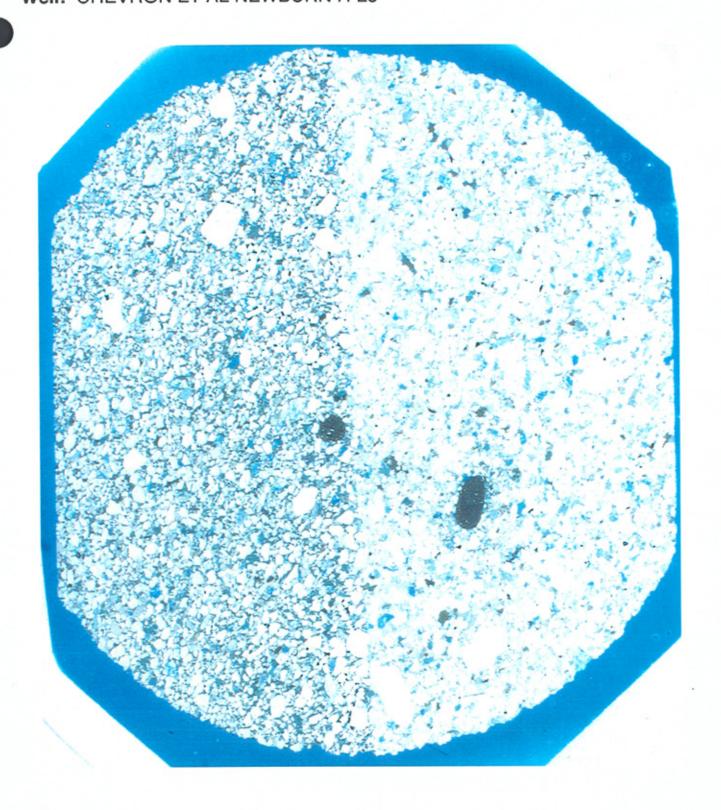

Well: CHEVRON ET AL NEWBURN H-23

Sample: Depth (m): SP 11 4349.70

Well: CHEVRON ET AL NEWBURN H-23

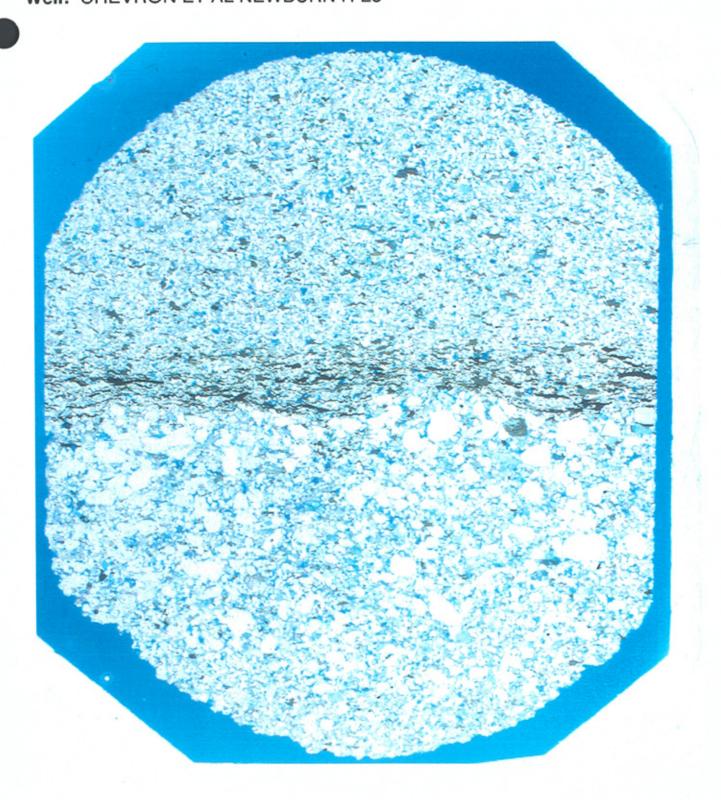
Sample: Depth (m): SP 12 4325.50

Well: CHEVRON ET AL NEWBURN H-23



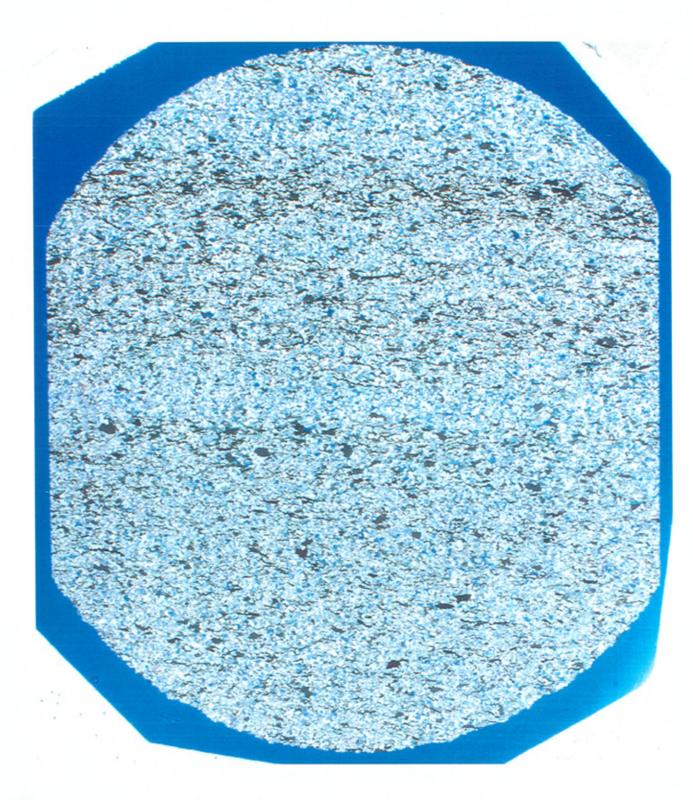
Sample: Depth (m):

SP 13 4323.00


Company: CHEVRON CANADA RESOURCES Well: CHEVRON ET AL NEWBURN H-23

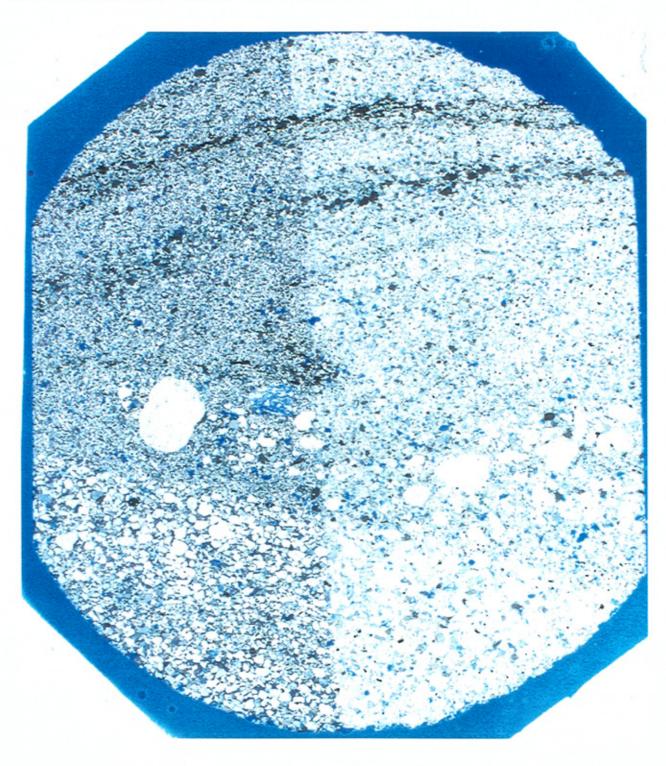
Sample: Depth (m): SP 14 4319.80

Company: CHEVRON CANADA RESOURCES Well: CHEVRON ET AL NEWBURN H-23

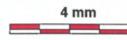


Sample: Depth (m): SP 15 4318.50

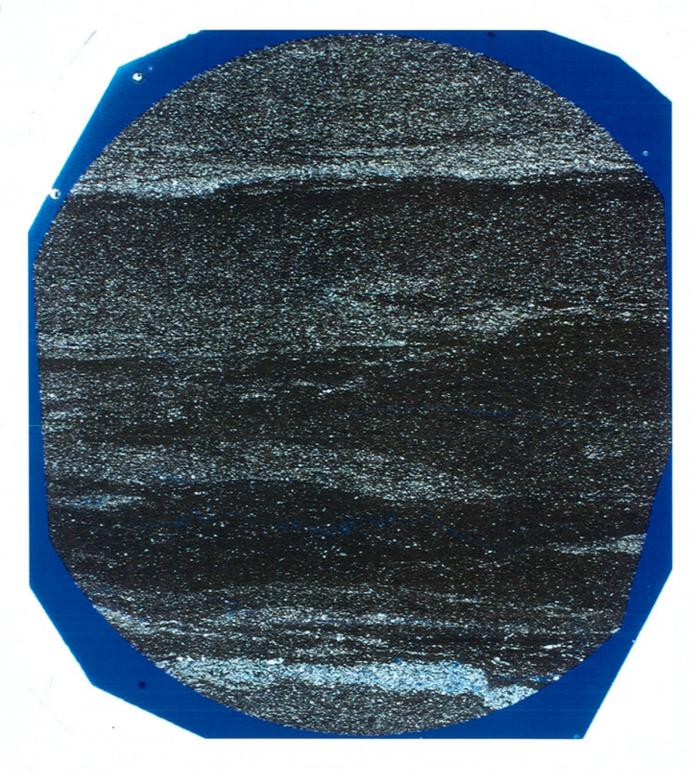
Well: CHEVRON ET AL NEWBURN H-23



Sample: Depth (m): SP 16 4313.5



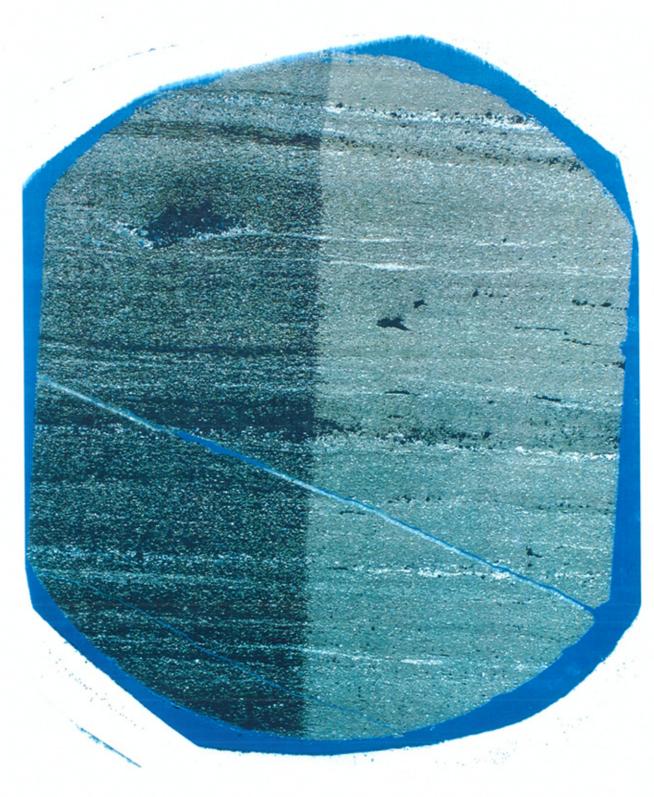
Well: CHEVRON ET AL NEWBURN H-23



Sample: SP 17 Depth (m): 4312.80



Well: CHEVRON ET AL NEWBURN H-23



Sample: Depth (m): SP 18 4307.80

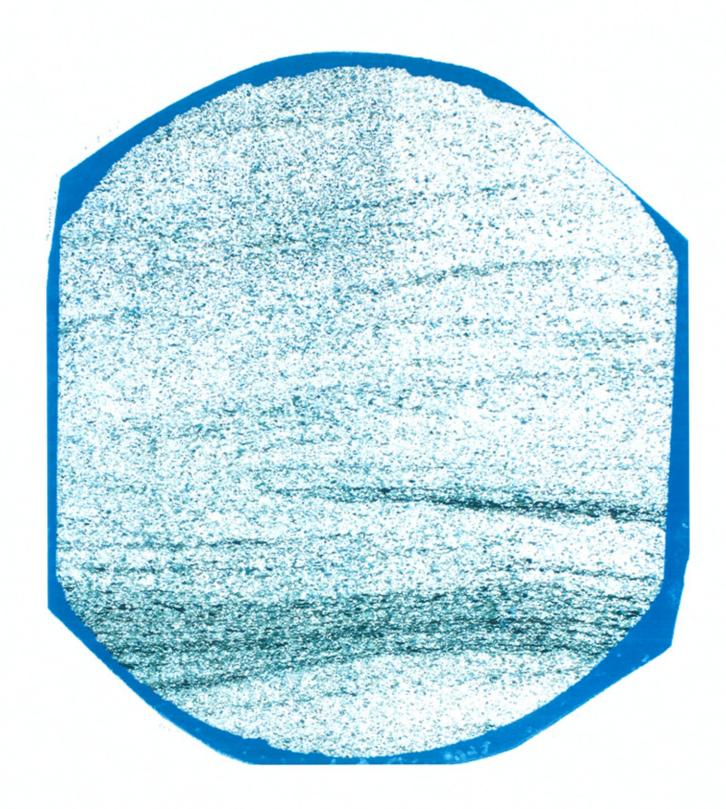
Company: CHEVRON CANADA RESOURCES Well: CHEVRON ET AL NEWBURN H-23

Sample: 16
Depth (m): 5186.50
Core porosity (%): N/A


Kair (mD):

N/A

Company: CHEVRON CANADA RESOURCES Well: CHEVRON ET AL NEWBURN H-23



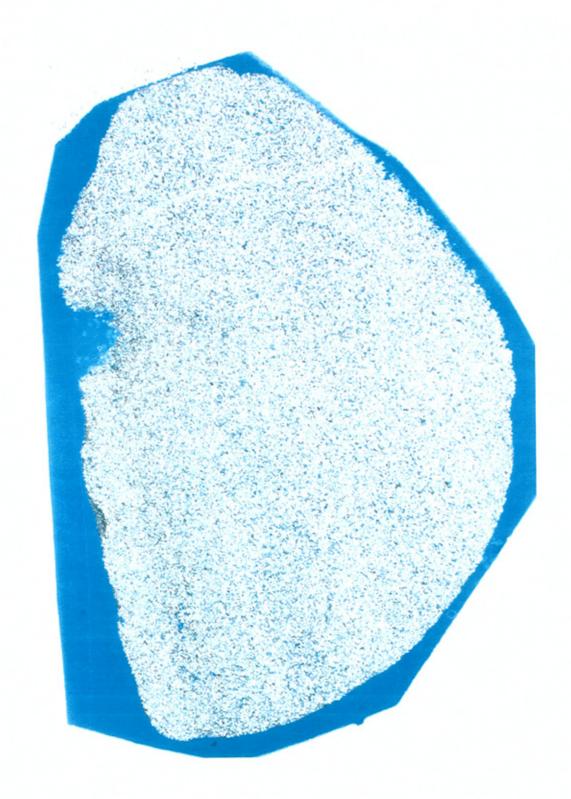
Sample: 15
Depth (m): 5189.00
Core porosity (%): N/A
Kair (mD): N/A

Sample: 12 **Depth (m)**: 5403.60 **Core porosity (%)**: 7.2

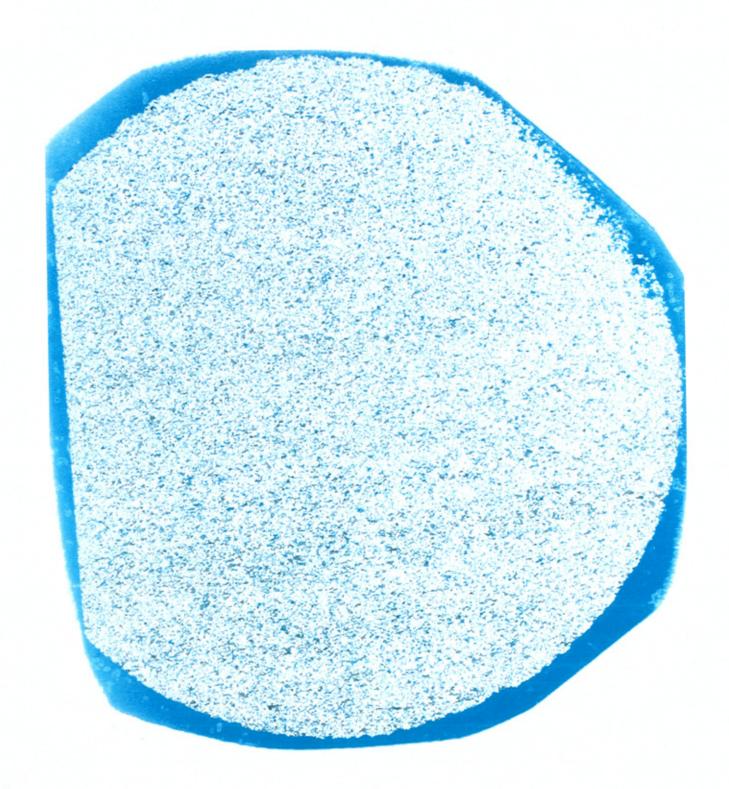
Kair (mD):

<0.01

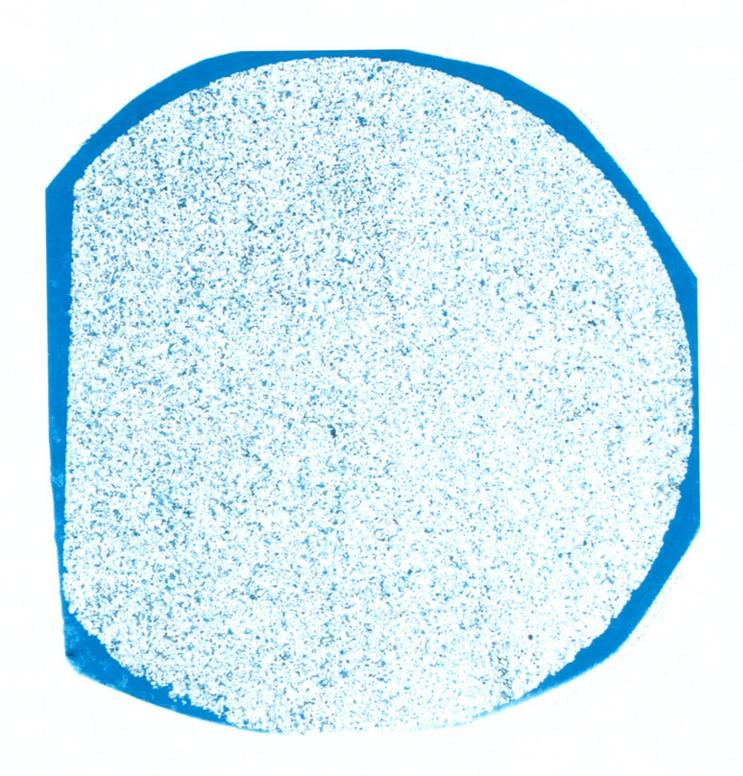




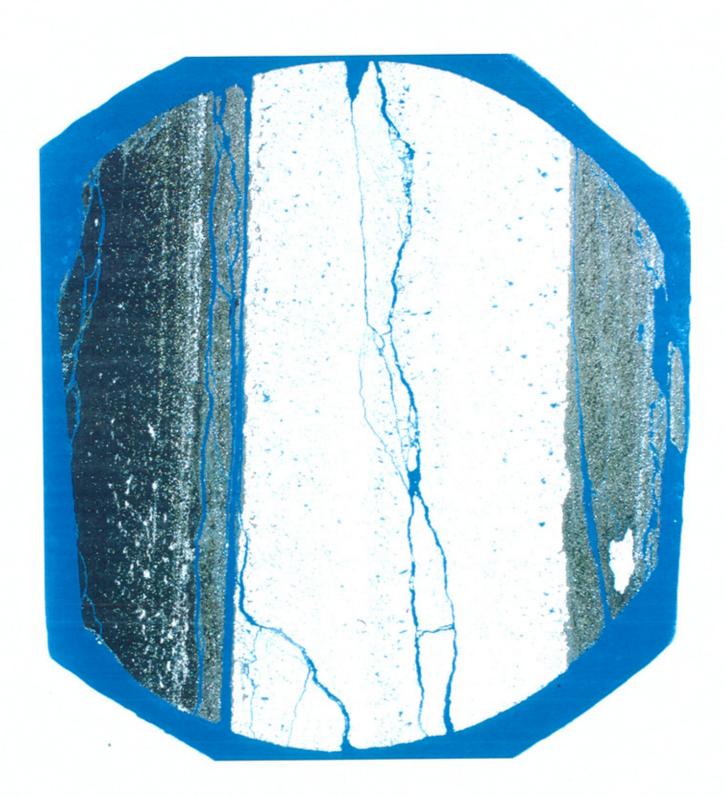
Sample: 11
Depth (m): 5406.50
Core porosity (%): 9.1
Kair (mD): 0.04



10 Sample: Depth (m): 5407.00 Core porosity (%): 17.0 0.15 Kair (mD):

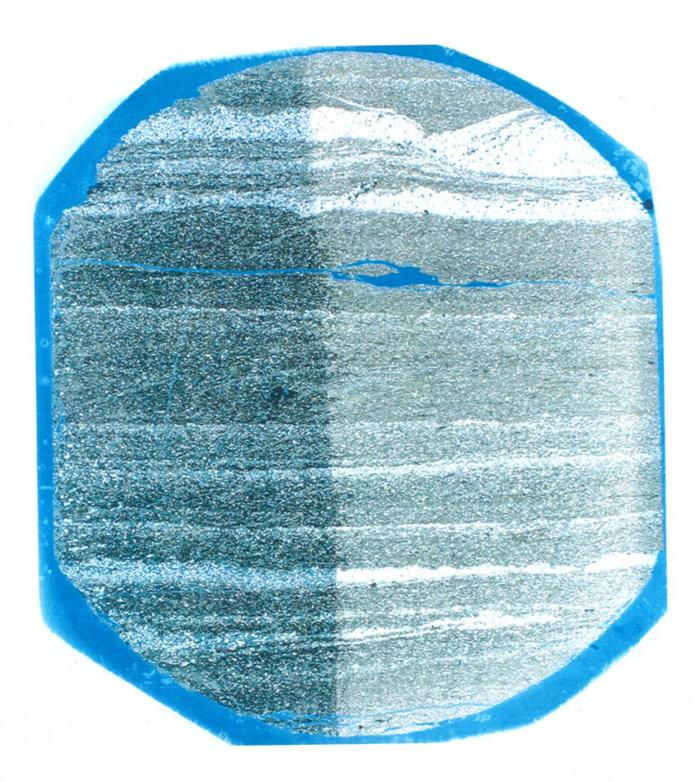


Sample: 9
Depth (m): 5407.50
Core porosity (%): 18.9
Kair (mD): 5.73

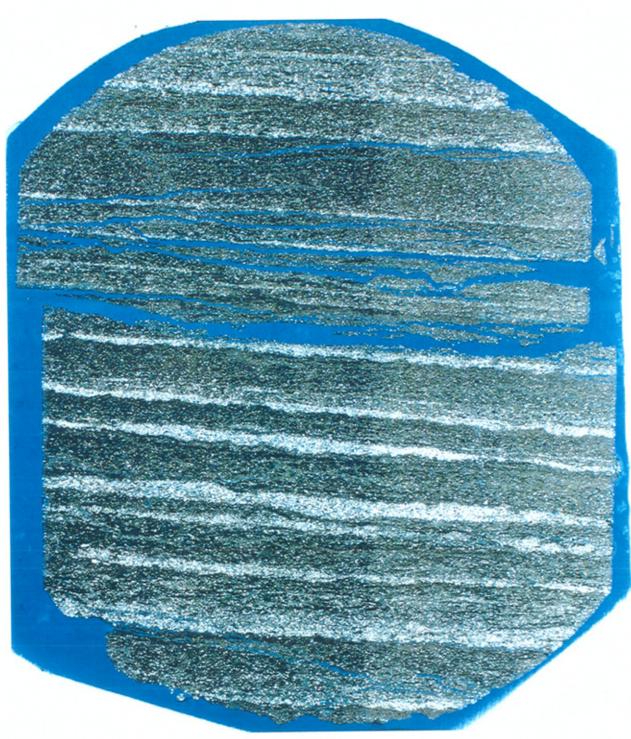


8 Sample:

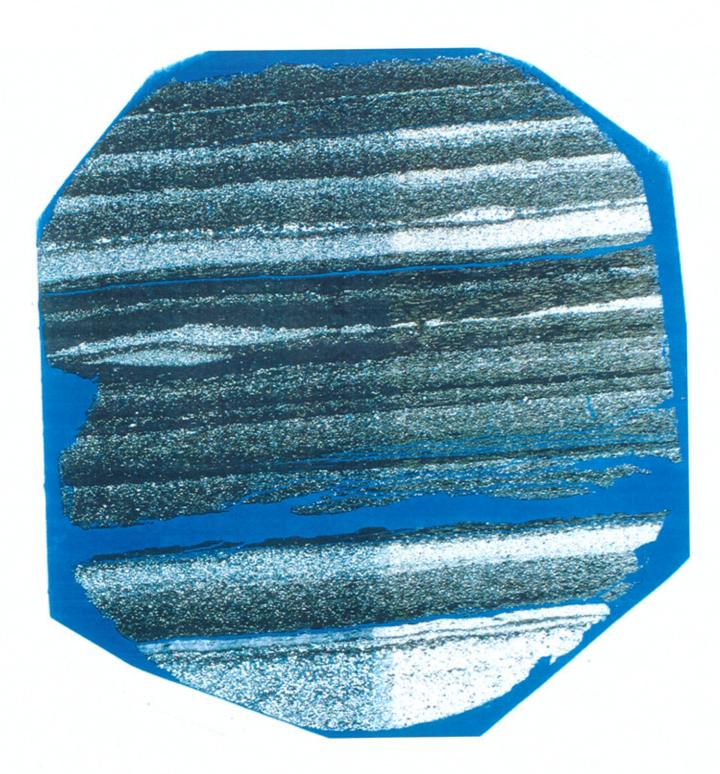
Depth (m): 5408.50 Core porosity (%): 17.9 Kair (mD): 6.43



Sample: 6
Depth (m): 5195.30
Core porosity (%): N/A
Kair (mD): N/A

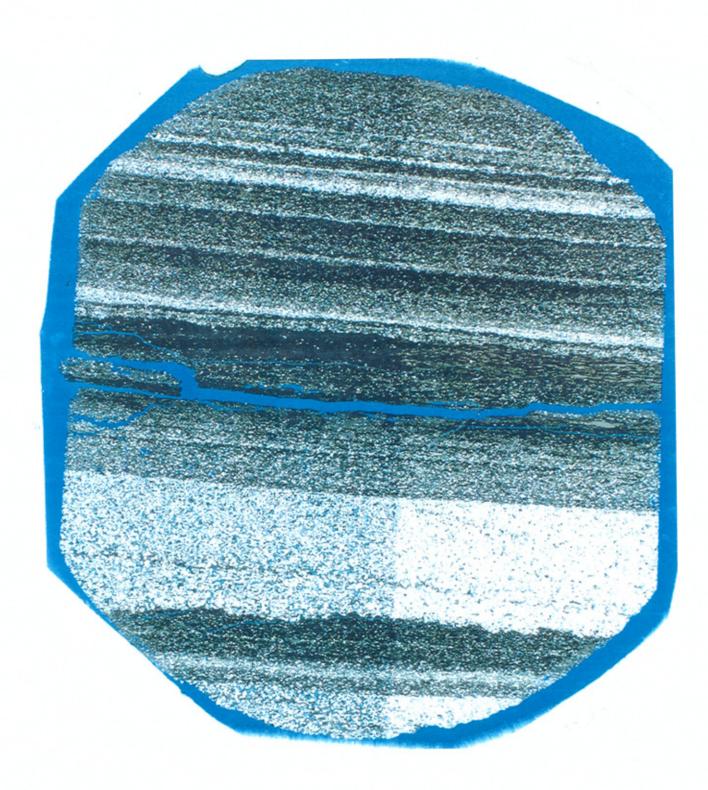


Sample: 5
Depth (m): 5198.50
Core porosity (%): N/A
Kair (mD): N/A



Sample: 4 Depth (m): 5203.80

Core porosity (%): N/A Kair (mD): N/A

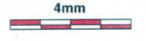


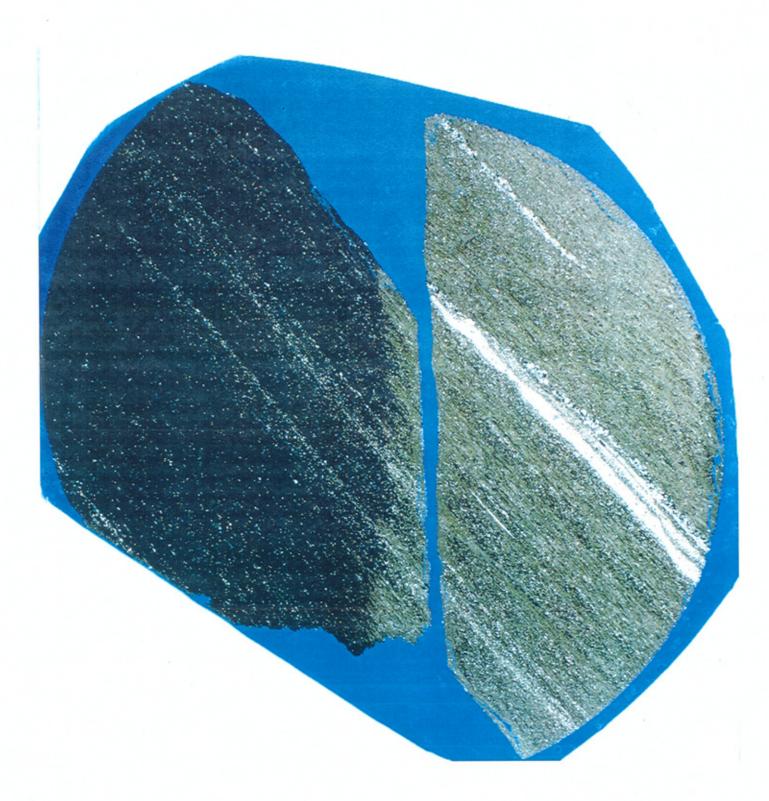
Sample: 3 Depth (m): 5208.50

Core porosity (%): N/A Kair (mD): N/A

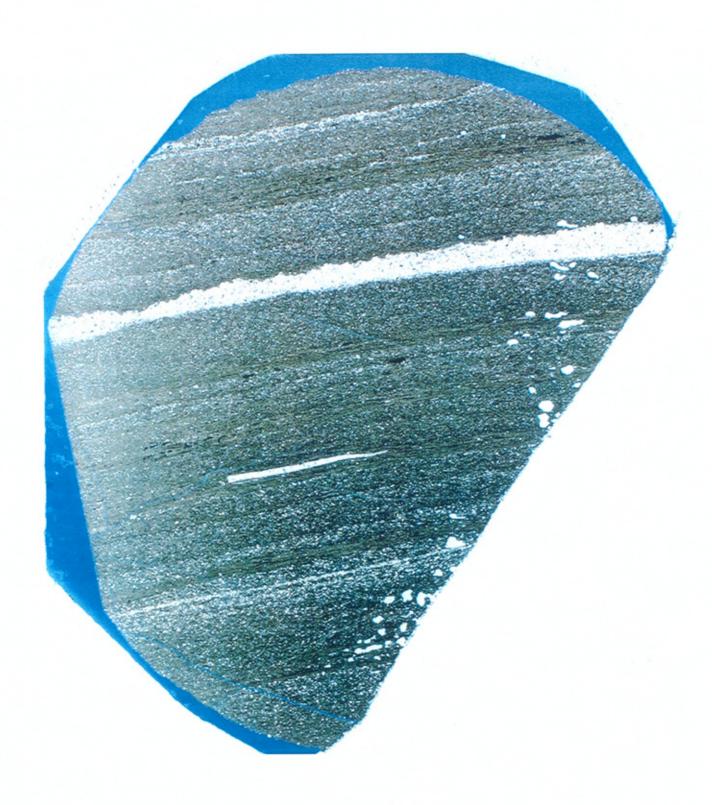
Sample: 2 Depth (m): 5213.50

Core porosity (%): N/A Kair (mD): N/A



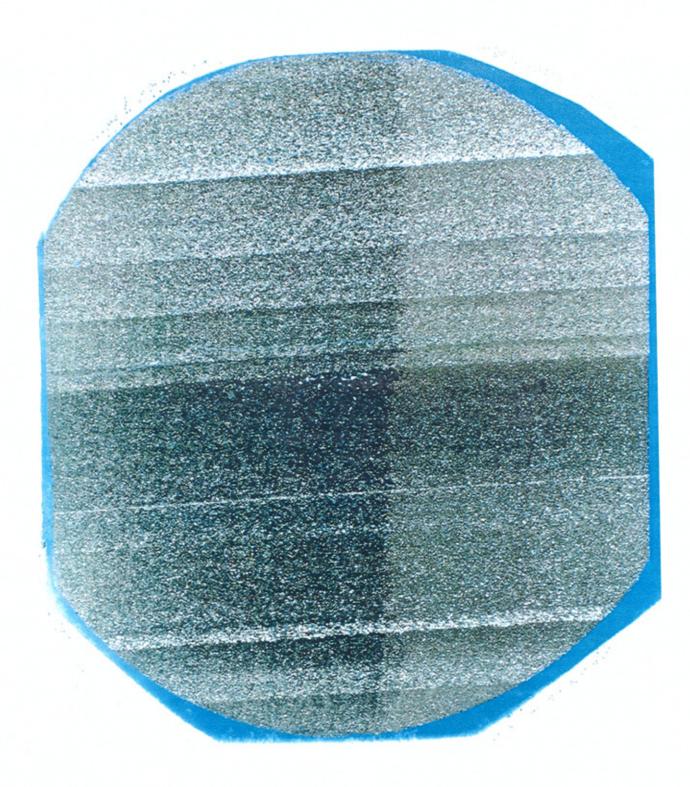


Sample: 18
Depth (m): 5133.80
Core porosity (%): N/A
Kair (mD): N/A



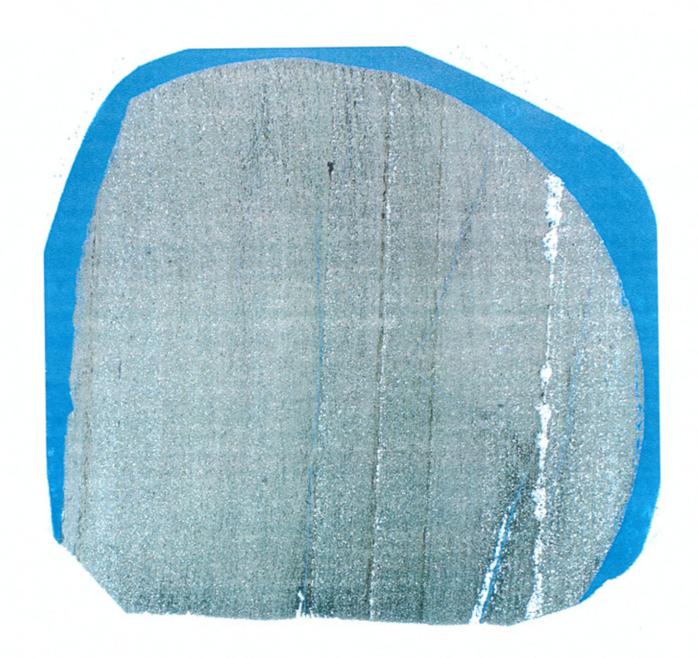
Sample: 19
Depth (m): 5129.00
Core porosity (%): N/A
Kair (mD): N/A

 Sample:
 21


 Depth (m):
 5063.00

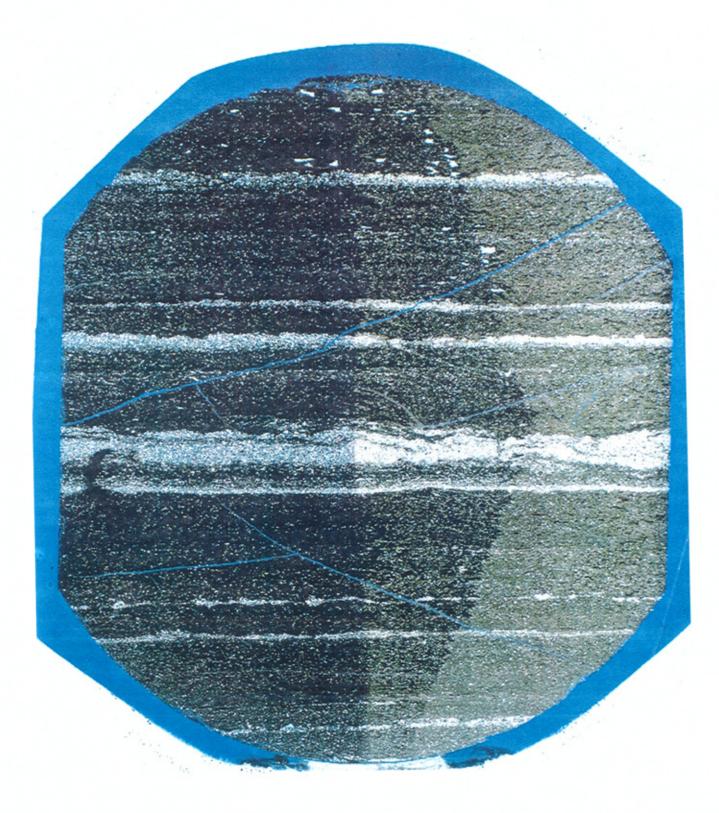
 Core porosity (%):
 N/A

 Kair (mD):
 N/A



Sample: 23
Depth (m): 4780.40
Core porosity (%): N/A
Kair (mD): N/A

22 Sample: Depth (m): 5100.80 Core porosity (%): N/A Kair (mD): N/A



Sample: 24
Depth (m): 4913.80
Core porosity (%): 9.4
Kair (mD): 0.09

Sample: 25
Depth (m): 4960.00
Core porosity (%): N/A
Kair (mD): N/A

Thin section photographs from the 165mm (6.5 inch) hole section were not received as of November 22, 2002. They will be forwarded separately when completed.